
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ucgs20

Linear Time Dynamic Programming for Computing
Breakpoints in the Regularization Path of Models
Selected From a Finite Set

Joseph Vargovich & Toby Dylan Hocking

To cite this article: Joseph Vargovich & Toby Dylan Hocking (2022) Linear Time Dynamic
Programming for Computing Breakpoints in the Regularization Path of Models Selected
From a Finite Set, Journal of Computational and Graphical Statistics, 31:2, 313-323, DOI:
10.1080/10618600.2021.2000422

To link to this article: https://doi.org/10.1080/10618600.2021.2000422

Published online: 10 Jan 2022.

Submit your article to this journal

Article views: 31

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/loi/ucgs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2021.2000422
https://doi.org/10.1080/10618600.2021.2000422
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2021.2000422
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2021.2000422
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.2000422&domain=pdf&date_stamp=2022-01-10
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.2000422&domain=pdf&date_stamp=2022-01-10

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2022, VOL. 31, NO. 2, 313–323
https://doi.org/10.1080/10618600.2021.2000422

Linear Time Dynamic Programming for Computing Breakpoints in the Regularization
Path of Models Selected From a Finite Set

Joseph Vargovich and Toby Dylan Hocking

SICCS Machine Learning Research Laboratory, Northern Arizona University, Flagstaff, AZ

ABSTRACT
Many learning algorithms are formulated in terms of finding model parameters which minimize a data-
fitting loss function plus a regularizer. When the regularizer involves the �0 pseudo-norm, the resulting
regularization path consists of a finite set of models. The fastest existing algorithm for computing the
breakpoints in the regularization path is quadratic in the number of models, so it scales poorly to high-
dimensional problems. We provide new formal proofs that a dynamic programming algorithm can be used
to compute the breakpoints in linear time. Our empirical results include analysis of the proposed algorithm
in the context of various learning problems (regression, changepoint detection, clustering, and matrix
factorization). We use a detailed analysis of changepoint detection problems to demonstrate the improved
accuracy and speed of our approach relative to grid search and a previous quadratic time algorithm.

ARTICLE HISTORY
Received July 2020
Revised August 2021

KEYWORDS
Binary segmentation;
Changepoint detection;
Dynamic programming;
Model selection

1. Introduction

In statistical machine learning, two central concepts are opti-
mization and regularization. Optimization is typically used to
compute model parameters which result in the best predictions
on a training set, whereas regularization is used to avoid over-
fitting, which occurs when predictions are only accurate for
training data and not for held-out validation or test data. There
are many types of regularization, but the focus in this article
is on methods which measure model complexity by counting
the number of nonzero parameters. Some typical examples are
given in Table 1, which includes best subset regression (Miller
2002; Soussen et al. 2010), optimal segmentation (Auger and
Lawrence 1989; Jackson et al. 2005), k-means clustering (Mac-
Queen 1967), and low-rank matrix factorization (Huang and
Wolkowicz 2018). In this context, the regularization path is a
sequence of models with varying complexity, for example, from
k = 1 to 20 cluster centers in k-means clustering. Another
example of the regularization path is the sequence of optimal
segmentation models selected for a given range of penalties
(Haynes, Eckley, and Fearnhead 2017).

More precisely, we propose to study the regularization path
of machine learning problems such as

θ̂ (λ) = arg minθL(θ) + λR(θ), (1)

where θ ∈ R
p is a vector of model parameters, the loss function

L : R
p → R is typically convex, and λ ≥ 0 is a penalty

constant. The regularizer R : R
p → R+ is a non-convex

function involving the �0 pseudo-norm,

||θ ||0 =
p∑

j=1
I[θj �= 0] ∈ Z+ = {0, 1, . . . , p} (2)

CONTACT Joseph Vargovich jrv233@nau.edu School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 Knoles Dr, Flagstaff,
AZ 86011.

which counts the number of nonzero entries of the θ parameter
vector (I is the indicator function). For some learning problems,
it is important to compute not just a single model for one
penalty λ, but also the full regularization path {θ̂ (λ)|λ ≥ 0} =
{�1, �2, . . . , �N}. The path is a finite set of N models, that
is, for any λ ≥ 0, we have θ̂ (λ) = �k for some model
size k ∈ {1, . . . , N}. To simplify the presentation we limit our
discussion to regularizers R(�k) = k which are equal to model
size. More general regularizers, for example, R(�k) = rk for
some sequence of increasing values r1 < · · · < rN , can be
handled using a straightforward modification of our proposed
algorithm, which is described in Section 2.2.

One example is the best subset regression, which seeks the
best k features for a linear regression function. Typically the
loss function is mean-squared prediction error, and the regu-
larizer is the number of non-zero entries (active features) in
the learned weight vector. In this problem, there a total of p
input features and therefore a set of N = p + 1 model sizes
in the regularization path {�0, �1, . . . , �p}. This nonconvex
problem is NP-hard, so the optimal regularization path can only
be computed for low-dimensional problems (Bertsimas, King,
and Mazumder 2016). For high-dimensional problems there are
various heuristic algorithms for computing approximate solu-
tions, for example, greedy forward/backward selection (Mallat
and Zhang 1993; Davis, Mallat, and Zhang 1994; Miller 2002;
Schniter, Potter, and Ziniel 2009; Soussen et al. 2010), non-
smooth non-convex regularizers (Fan and Li 2001; Zhang 2010;
Mazumder, Friedman, and Hastie 2011; van den Burg, Groenen,
and Alfons 2017), and �1 regularization/LASSO (Tibshirani
1996; Chen, Donoho, and Saunders 1998). Each weight vector
�k ∈ R

p in the optimal or approximate regularization path has

© 2021 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

https://doi.org/10.1080/10618600.2021.2000422
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2021.2000422&domain=pdf&date_stamp=2022-05-06
mailto:jrv233@nau.edu

314 J. VARGOVICH AND T. D. HOCKING

Table 1. Examples of machine learning problems which use the �0 pseudo-norm
as a regularizer.

Problem Loss Regularizer Model complexity

Best subset regression ||Xθ − y||22 ||θ ||0 Features selected
Optimal segmentation ||θ − y||22 ||Dθ ||0 Segments/changepoints
k-means Clustering ||θM − X||F ||θT 1||0 Cluster centers
Matrix factorization ||UDiag(θ)VT − X||F ||θ ||0 Rank

k nonzero entries, R(�k) = ||�k||0 = k. The extreme elements
correspond to the ordinary least squares solution �p with all
features selected, and the completely regularized solution �0
with no features selected.

Another example is optimal segmentation, which is the max-
imum likelihood model with k segments (k − 1 changepoints)
for a sequential dataset. In this problem, there are p sequence
data, and each element �k of the regularization path has k ∈
{1, . . . , p} distinct segments (k−1 changes) along the sequence,
that is, R(�k) = 1 + ||D�k||0 = k where D ∈ R

p−1×p

is the matrix which returns the difference between adjacent
pairs of data in the sequence. Even though this problem is
nonconvex, an optimal solution can be computed via dynamic
programming algorithms that are log-linear in the number of
data, and linear in the number of models (Killick, Fearnhead,
and Eckley 2012; Maidstone et al. 2016). There are also several
fast heuristic algorithms, including binary segmentation (Scott
and Knott 1974; Truong, Oudre, and Vayatis 2018), which com-
putes an approximate regularization path of N = p models in
O(N log N) time on average and O(N2) in the worst case. The
optimal or approximate regularization path of N = p models
{�1, �2, . . . , �p} has extreme elements �1 with no changes
(one common segment/parameter for the entire data sequence)
and �p with a change after every data point (a different seg-
ment/parameter for each data point).

In this context, solving the penalized problem (1) for a given
penalty λ ≥ 0, results in one of the solutions to the correspond-
ing constrained problem,

Lk = min
θ

L(θ), subject to R(θ) ≤ k, (3)

where k ∈ Z+ is the model size (selected features, change-
points, clusters, etc). We assume there is some algorithm that can
compute a regularization path {�1, �2, . . . , �N} of solutions
to (3) with corresponding loss values, L1 > · · · > LN (e.g.,
binary segmentation algorithm for changepoint detection, k-
means algorithm for clustering).

In this article, we use the term “model selection” to refer to
an algorithm for computing a desirable model size k ∈ Z+,
given precomputed loss values L1, . . . , LN . If the loss values L1 >

. . . > LN in a regularization path {�1, �2, . . . , �N} are known,
they can be used to define the model selection function

k∗
N(λ) = arg mink∈{1,...,N} Lk + λk︸ ︷︷ ︸

fk(λ)

. (4)

The model selection function (4) returns the (smallest) model
complexity k which is optimal for a given penalty parameter λ.
Model complexity refers to the number of segments used to fit
blocks of data, separated by detected changepoints, with an aver-
age value line. Thus, the model complexity (k) refers to the total

amount of unique segments present in a given segmentation
model. Note that strictly speaking the model selection function
selects the order or size k of the model (not the model parame-
ters �k, which are assumed to be computed prior to selection).
In this article, we provide a new formal proof that dynamic
programming can be used to compute an exact representation of
the model selection function k∗

N(λ) in linear O(N) time, as well
as the set of corresponding breakpoints between models selected
(assuming that the loss values Lk have already been computed).

1.1. Existing Algorithms and Related Work

The model selection function k∗
N(λ) can be trivially evaluated

for a single λ parameter in linear O(N) time, which yields the
solution to (1) via θ̂ (λ) = �k∗

N (λ). However, for some learn-
ing algorithms, we need an exact representation of the model
selection function for a full path of penalty λ values. Given a
set of N precomputed loss values Lk, there are quadratic O(N2)
time algorithms for computing the model selection function,
which were proposed in the context of changepoint detection
(Lavielle 2005; Hocking et al. 2013) and regression (Arlot and
Massart 2009). These quadratic time algorithms are not based
on dynamic programming (see Section 3.2 for details), and are
too slow for high-dimensional problems such as computing the
full path of binary segmentation models for large datasets. In
this context computing, the N loss values can be done in log-
linear O(N log N) time, so the quadratic time model selection is
the speed bottleneck (see Section 4.2).

The algorithm we propose is similar to the “convex hull
trick” which is informally described, without any references
to the machine learning literature, on a web page (PEGWiki
2018). The novelty of our article with respect to that previous
work is (i) rigorous formal proofs of the linear time complexity
and optimality, (ii) explaining the relevance to the machine
learning literature, and (iii) detailed theoretical and empirical
comparisons with baseline algorithms.

A final related work is the CROPS algorithm of Haynes,
Eckley, and Fearnhead (2017), which also proposes an algorithm
that outputs an exact path of solutions for several penalty values.
Both articles exploit the structure of the piecewise linear model
selection function which relates the constrained and penalized
problems. The input to our algorithm is a sequence of con-
strained models of sizes 1 to N, whereas the input to CROPS
is an interval of penalty values. In general the two algorithms
output different results (partial solution paths). However, in the
special case, when N = p models are input to our algorithm
(all possible models) and the interval (0, ∞) is input to CROPS,
then the two algorithms return the same output (the full path).

1.2. Contributions and Organization

In this article, we propose a new dynamic programming algo-
rithm for computing the model selection function k∗

N(λ), and we
prove that it computes an exact representation for all penalties
λ ≥ 0 (Section 2). Our second contribution is a theoretical
analysis of the time complexity of our algorithm, which demon-
strates that it is linear O(N) time in the worst case; we also
provide a theoretical analysis of previous algorithms in terms

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 315

of the framework of this article (Section 3). Our third contri-
bution is an empirical study of time complexity in several real
and synthetic datasets, including a comparison with previous
algorithms (Section 4). Our final contribution is an empirical
study of the prediction accuracy in cross-validation experiments
on supervised changepoint detection problems (Section 5.1).
The article concludes with a discussion (Section 6).

2. Proposed Dynamic Programming Algorithm

We propose a dynamic programming algorithm for N decreas-
ing loss values L1 > · · · > LN ; it computes an exact repre-
sentation of the k∗

N(λ) model selection function for all penalties
λ ≥ 0.

2.1. Exact Representation of a Piecewise Constant
Function Using Breakpoints

Our proposed algorithm recursively computes k∗
N from k∗

N−1, so
is an instance of dynamic programming (Bellman 1961). At each
step/iteration t ∈ {1, . . . , N} of the algorithm, the algorithm
stores a set of Mt ∈ {1, . . . , t} selectable models,

1 = Kt,1 < Kt,2 < · · · < Kt,Mt = t. (5)

Note that when all model sizes from 1 to t are selected for at
least one penalty λ then we have Mt = t. Otherwise, if at
least one model is not selected for any penalty λ, then we have
fewer selectable models, Mt < t. The algorithm also stores a
corresponding set of breakpoints,

∞ = bt,0 > bt,1 > · · · > bt,Mt = 0. (6)

These two sets define for all t ≥ 1 a recursively computed model
selection function,

Ft(λ) =

⎧⎪⎨
⎪⎩

Kt,1 if λ ∈ (bt,1, bt,0)
...

Kt,Mt if λ ∈ (bt,Mt , bt,Mt−1)

(7)

We prove later (Theorem 1) that the recursively computed func-
tion FN is identical to k∗

N , the desired model selection func-
tion (4). The geometric interpretation of the models Kt,i ∈ Z

and breakpoints bt,i ∈ R are shown in Figure 1. Each breakpoint
is a penalty value where the min cost (gray segments) changes
from one cost function to another (black lines).

2.2. Dynamic Programming Update Rules

The algorithm starts at the first iteration t = 1 by initializing
M1 = 1 model with

K1,1 = 1, b1,1 = 0, b1,0 = ∞, (8)

which is an exact representation of the first model selection
function F1. For all other iterations t > 1, the algorithm begins
by discarding any breakpoints which are no longer necessary,
then adds one new breakpoint. In detail, at iteration t, we need
to additionally minimize over the new cost function, ft(λ) =
Lt + λt. To update our breakpoints in the minimum cost, we
first need to compute new candidate breakpoints, where this

new cost function is equal to the cost of a previously selected
model i ∈ {1, . . . , Mt−1}, that is,

Lt + λt = LKt−1,i + λKt−1,i. (9)

The penalty λ for that new candidate breakpoint is therefore

c(t, i) = LKt−1,i − Lt

t − Kt−1,i
. (10)

Note that c(t, i) is a penalty value, but it is defined in terms of the
coefficients of the loss functions (it is the penalty where the loss
functions are equal). As an aside, to modify the algorithm to use
a more general regularizer R(�k) = rk, we need to change the
denominator of Equation (10) from t − Kt−1,i to rt − rKt−1,i .

The algorithm then computes the largest model size i for
which the candidate breakpoint c(t, i) is less than the previously
stored breakpoint bt−1,i−1,

It = max
{

i ∈ {1, . . . , Mt−1}|c(t, i) < bt−1,i−1
}

. (11)

The model It is the largest from the previous iteration which is
kept during this iteration (all larger sizes i > It are discarded
because they are no longer optimal for any penalty). Note that
It ≥ 1 for any t, because the inequality in (11) is always true for
i = 1, that is, c(t, 1) < bt−1,0 = ∞ for any t.

We then compute the number of models selected at itera-
tion t,

Mt = It + 1. (12)

The algorithm stores the new set of models selected at itera-
tion t,

Kt,i =
{

Kt−1,i for i ∈ {1, . . . , It}
t for i = Mt .

(13)

The algorithm also stores the new breakpoint c(t, It) along with
some of the previous breakpoints,

bt,i =
⎧⎨
⎩

bt−1,i for i ∈ {0, . . . , It − 1}
c(t, It) for i = It
0 for i = Mt .

(14)

Once the selected models Kt,i and breakpoints bt,i have been
recursively computed via (13) and (14), the model selection
function Ft is defined using Equation (7).

2.3. Demonstration of Algorithm up to t = 3

In this section, we provide two example runs of the algorithm.
The initialization creates an exact representation of k∗

1 = F1, via
one possible model K1,1 = 1 with loss L1 = 7 which is selected
for all λ between the two breakpoints b1,1 = 0 < b1,0 = ∞.
The second iteration uses L2 = 4 to compute the candidate
breakpoint c(2, 1) = 3 which is stored in the new breakpoints
b2,2 = 0 < b2,1 = c(2, 1) = 3 < b2,0 = ∞, along with M2 = 2
models K2,2 = 2 > K2,1 = 1 (Figure 1, left).

At iteration t = 3 we first compute the candidate c(3, 2)

and compare it to the stored breakpoint b2,1. For a small loss
value, for example, L3 = 0 (Figure 1, middle), we have c(3, 2) =
4 ≥ b2,1 = 3 so the previous breakpoint b2,1 = 3 is removed,
and the candidate c(3, 2) = 4 is discarded. Next, we check

316 J. VARGOVICH AND T. D. HOCKING

Figure 1. Two possible runs of the algorithm for N = 3 models (middle and right panels show how the algorithm works with two different L3 values, given the same L1
and L2 values). Left: at iteration t = 2, the cost function f2(λ) is minimal (gray curve) for penalties λ < b2,1 = c(2, 1) = 3, and f1(λ) is minimal otherwise. Middle: at
iteration t = 3 a small L3 value results in c(3, 2) = 4 > 3 = b2,1 so we remove b2,1 and K2,2 = 2, because f2(λ) is no longer minimal for any λ. Right: at iteration t = 3 a
large L3 value results in c(3, 2) = 2 < 3 = b2,1 so we keep b2,1 = b3,1 and store a new breakpoint c(3, 2) = b3,2.

c(3, 1) = 3.5 < b2,0 = ∞ so i = 1 is the largest model satisfying
the inequality in (11) and thus I3 = 1. The new breakpoints
b3,2 = 0 < b3,1 = c(3, 1) = 3.5 < ∞ = b3,0 are computed and
stored with M3 = 2 models K3,2 = 3 > 1 = K3,1. For a large
loss value, for example, L3 = 2 (Figure 1, right), c(3, 2) = 2 <

b2,1 = 3 implies I3 = 2 and the previous breakpoint b2,1 = 3
is kept along with the candidate c(3, 2) = 2. The breakpoints
b3,3 = 0 < c(3, 2) = 2 < b2,1 = 3 < b3,0 = ∞ are stored with
M3 = 3 models K3,3 = 3 > 2 > 1 = K3,1.

2.4. Recursive Update Rules Are Optimal

Equations (5)–(14) define a dynamic programming algorithm,
because the recursively computed FN is optimal in the sense of
Equation (4), as demonstrated in the following theorem.

Theorem 1 (Update rules yield the optimal model selection
function). The recursively computed function FN (7) and the
model selection function k∗

N (4) are identical.

Proof. The proof follows from Equations (5)–(14) using induc-
tion on t. The base case is t = 1, for which the initialization (8)
of the recursively computed function implies F1(λ) = 1 for all
λ ∈ (0, ∞). Because at iteration t = 1, there is only one possible
model, it is clear that F1(λ) = k∗

1(λ) for all λ.
The proof by induction now assumes that Ft−1(λ) = k∗

t−1(λ)

for all λ; we will prove that the same is true for t. The recursive
updates (13)–(14) imply that

Ft(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kt−1,1 if λ ∈ (bt−1,1, bt−1,0)
...

Kt−1,It if λ ∈ (c(t, It), bt−1,It−1)
t if λ ∈ (0, c(t, It))

(15)

=
{

Ft−1(λ) if λ > c(t, It)
t if λ < c(t, It)

(16)

We need to prove that the function above returns the model
size k ∈ {1, . . . , t} with min cost fk(λ), for any penalty λ.
Equations (11)–(10) imply Kt−1,It = Ft−1[c(t, It)] is the min

cost model at the penalty c(t, It) where the new cost function ft
equals the previous min cost function,

ft[c(t, It)] = fKt−1,It [c(t, It)] = min
k∈{1,...,t−1}

fk[c(t, It)]. (17)

Because ft(λ) = Lt + λt is a linear function with a larger slope
than any of f1, . . . , ft−1, and a smaller intercept Lt < Lt−1 < · · · ,
we therefore deduce that ft is less costly before c(t, It), and more
costly after:{

ft(λ) < mink∈{1,...,t−1} fk(λ) for all λ < c(t, It)
ft(λ) > mink∈{1,...,t−1} fk(λ) for all λ > c(t, It)

(18)

Combining Equations (16), (18) and using the induction
hypothesis completes the proof that Ft(λ) = k∗

t (λ) =
arg mink∈{1,...,t}ft(λ) for all λ.

3. Linear Time Algorithm With Theoretical
Complexity Analysis

In this section, we propose pseudocode that efficiently imple-
ments the dynamic programming algorithm, and provide a
proof of worst-case linear time complexity. We also provide a
theoretical analysis of the previous quadratic time algorithm in
terms of the framework of this article.

3.1. Proposed Linear Time Algorithm

We propose Algorithm 1, which is pseudocode for Equations
(11)–(14). It recursively computes an exact representation of
the model selection function FN in terms of breakpoints b and
selected models K.

It begins by initializing the model selection function F1
(line 3). Then for all t ∈ {2, . . . , N} it recursively computes Ft
from Ft−1. The first step in the loop (Line 5) is to call the Solve
sub-routine, which computes the number of selected models
Mt and the new breakpoint λ = c(t, Mt − 1). The number of
while loop evaluations w[t] can optionally be stored in order to
analyze empirical time complexity. The next step is to store the
new model t and new breakpoint λ (line 6), which completes
the computation of Ft .

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 317

Algorithm 1 Dynamic programming for computing exact rep-
resentation of model selection function

1: Input: Array of N real numbers L[1] > · · · > L[N]
(decreasing loss values).

2: Allocate: selected models K ∈ Z
N , breakpoints b ∈ R

N ,
while loop iterations w ∈ Z

N

3: Initialize: number of models M ← 1, breakpoint b[1] ←
∞, selected model K[1] ← 1

4: for t = 2 to N do
5: M, λ, w[t] ← Solve(K, b, L, M, t)
6: b[M] ← λ, K[M] ← t // store a new breakpoint
7: end for
8: Output: selected models K[1 : M], breakpoints b[1 : M],

while loop iterations w[2 : N]

In this article, we propose an amortized constant O(1) time
implementation of the Solve sub-routine (Algorithm 2). It
computes It , Mt by solving the maximization in Equation (11)
using a linear search over possible values of the model index
i. It starts at the current number of selected models (Line 2),
and then repeatedly tests the criterion from Equation (11). If the
current value of the model index i does not satisfy the condition
of the while loop (Line 3), then the model index is decremented
to remove a breakpoint (Line 4). The number of while loop
iterations wt (Lines 2, 4) can be optionally computed in order
to analyze the empirical time complexity of the algorithm. Even
though Algorithm 2 is clearly O(M) in the worst case, in the
next section we prove that it is amortized constant O(1) time
when used in the context of Algorithm 1. Using this sub-routine
therefore results in an overall linear O(N) time complexity for
Algorithm 1, in the best and worst case (Table 2).

Algorithm 2 Proposed Solve sub-routine
1: Input: selected model sizes K ∈ Z

N , breakpoints b ∈ R
N ,

loss values L ∈ R
N , number of selected models M ∈ Z, new

model size t ∈ Z.
2: i ← M, wt ← 1
3: while λ ← (L[K[i]] − L[t])/(t − K[i]) ≥ b[i] do
4: i − −, wt + + // remove a breakpoint
5: end while
6: Output: number of models i+1, new breakpoint λ, number

of while loop iterations wt

3.2. Previous Quadratic Algorithms

In this section, we provide a detailed comparison with several
previously proposed quadratic algorithms (Arlot and Massart
2009; Hocking et al. 2013). In terms of the framework of this
article, these previous algorithms can be interpreted as comput-
ing Kt,i, bt,i for t = N, without computing any of the solutions

Table 2. Summary of asymptotic complexity in terms of number of input
models, N.

Algorithm Best time Worst time Space

This paper, Algorithm 1 O(N) O(N) O(N)

Arlot and Massart (2009)
and Hocking et al. (2013) O(N) O(N2) O(N)

at the previous iterations t < N. These other algorithms are
therefore not performing dynamic programming. Whereas our
algorithm starts at the smallest model size and then updates
the model selection function for larger sizes, these other algo-
rithms begin at the largest model size. In particular they start
by initializing the largest model KN,MN = N and the smallest
breakpoint bN,MN = 0, then for all i ∈ {MN − 1, . . . , 1}
they recursively compute KN,i, bN,i from KN,i+1, bN,i+1. There
are MN − 1 iterations of this recursive computation, and each
iteration considers KN,i+1−1 breakpoints. The overall algorithm
is therefore O(NMN); best case O(N) is when the number of
selected models MN = 2 is small; worst case O(N2) is when
MN = N is large (Table 2). Interestingly, the opposite is true of
our algorithm (best case is when MN is large), as we prove in
the next section. We show that even in the worst case for our
algorithm (when MN is small), it is still asymptotically linear
O(N). The practical implication is that our algorithm results
in big speedups over the previous algorithm when the number
of selectable models MN is large, and has the same linear time
complexity when MN is small.

3.3. Proof of Linear Time and Space Complexity

The overall space complexity of Algorithm 1 is clearly O(N),
because up to N possible models/breakpoints can be computed.
This is the same storage/space complexity as previously pro-
posed algorithms (Table 2).

The time complexity depends on the implementation of the
Solve sub-routine (line 5). The computation time of our pro-
posed implementation of the Solve sub-routine (Algorithm 2)
depends on wt , the number of times the while condition is
evaluated (Line 3). In particular, the overall time complexity
of Algorithm 1 is linear in total number of times the while
condition is checked,

WN =
N∑

t=2
wt . (19)

The following result proves that Algorithm 1 is overall O(N)

time, by bounding the total number of times the while condition
is checked.

Theorem 2 (Best and worst-case time complexity). For any N
inputs to Algorithm 1, the total number of while loop iterations
WN over all calls to Algorithm 2 is bounded: N − 1 ≤ WN ≤
2N − 3.

Proof. The proof uses the fact that for all t ∈ {2, . . . , N}, we have

Mt = 2 + Mt−1 − wt , (20)

which follows from the definition of the number of while loop
iterations wt (on Line 4 of Algorithm 2, every iteration decre-
ments i, and therefore Mt). The total number of while loop
iterations is thus

WN =
N∑

t=2
wt =

N∑
t=2

2 + Mt−1 − Mt (21)

= 2(N − 1) +
N∑

t=2
Mt−1 −

N∑
t=2

Mt (22)

318 J. VARGOVICH AND T. D. HOCKING

= 2(N − 1) +
N−1∑
t=1

Mt −
N∑

t=2
Mt (23)

= 2N − 2 + M1 − MN (24)
= 2N − 1 − MN . (25)

The first two equalities (21) follow from the definitions of the
number of while loop iterations (19)–(20). The next equalities
come from distributing the sum (22), then re-writing the second
term as a sum from t = 1 to N −1 (23). The last equalities come
from subtracting the terms in the two sums (24), then using the
fact that M1 = 1 (25). The result is obtained using the fact that
the number of selectable models is bounded, 2 ≤ MN ≤ N.

The best case of Algorithm 1, WN = N − 1 iterations,
happens when the number of selected models is large, MN = N;
the worst case WN = 2N − 3 iterations occurs when MN = 2.
Because the total number of iterations is always O(N), the Solve
sub-routine (Algorithm 2) is amortized constant O(1) time on
average, even though it is linear in the number of models O(M)

in the worst case.

4. Empirical Complexity Analysis

In this section, we empirically examine the number of iterations
of our algorithm, and show that it is overall orders of magnitude
faster than previous baselines.

4.1. Empirical Iteration Counts Are Consistent With
Theoretical Bounds

As discussed in Section 3.3, the time complexity of Algorithm 1
is linear WN , the total number of iterations of the while loop
in the Solve sub-routine. Here, we demonstrate that the the-
oretical bounds on WN obtained in Theorem 2 are consistent
with the number of iterations obtained empirically in real and
synthetic data. First, we considered 1000 real cancer DNA copy
number datasets of different sizes p ∈ {2, . . . , 869} from R
package neuroblastoma. For each sequence dataset z ∈ R

p,
we used the Pruned Dynamic Programming Algorithm (PDPA)
of Rigaill (2015) to compute a sequence of optimal changepoint
models. For each number of segments k ∈ {1, . . . , p}, the

optimal loss is

Lk = min
θ∈Rp

p∑
j=1

(θj − zj)
2 (26)

subject to ||Dθ ||0 =
p−1∑
j=1

I[θj �= θj+1] = k − 1.

The PDPA returns a regularization path of N = p models,
from k = 1 segment (no changepoints, θj = θj+1 for all j) to
k = N = p segments (change after every data point, θj �= θj+1
for all j). We used the resulting loss values L1 > · · · > LN as
input to Algorithm 1. We plotted the number of iterations WN
as a function of dataset size N (black points in Figure 2), and
observed that they always fall between the upper/lower bounds
from Theorem 2 (gray lines). These results provide empirical
evidence that the time complexity of our algorithm is linear
O(N) in real data. Furthermore, we observed that the number of
iterations in these real data tends to be closer to the lower bound
than to the upper bound. Because the number of iterations
depends on the distribution of loss Lk values, this result suggests
that there are a relatively large number of selectable models
MN in these real data. More generally, we expect results near
the upper/lower bounds for datasets with few/many selectable
models MN (e.g., few/many significant changepoints with cor-
responding significant jumps in loss values).

Second, we considered two synthetic sequences of loss values,
Lt = N − t for all t ∈ {1, . . . , N} (e.g., L1 = 4 > 3 > 2 >

1 > 0 = L5 for N = 5) and Lt = N − √
t (e.g., L1 = 4 >

3.59 > 3.27 > 3 > 2.76 = L5 for N = 5). For these loss values,
we observed a number of iterations (violet points in Figure 2)
that always falls on the upper/lower bounds (gray lines), which
indicates that these synthetic data achieve the worst/best case.
Overall these results provide a convincing empirical validation
of our theoretical bounds from Theorem 2.

4.2. Empirical Timings Suggest Orders of Magnitude
Speedups

Our proposed algorithm takes as input a sequence of N loss val-
ues, which must be computed by some other machine learning
algorithm. In this section, we therefore analyzed our algorithm

Figure 2. Empirical verification of the theoretical bounds on the total number of iterations WN during a single call to our proposed Algorithm 1. In synthetic loss values
(light points) and loss values from optimal changepoint models of real neuroblastoma data (dark points), the total number of iterations is WN = O(N), linear in the number
of input models N, consistent with theoretical upper/lower bounds obtained in Theorem 2 (gray lines).

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 319

in the context of a two-step pipeline: (i) compute the N loss val-
ues, (ii) compute an exact representation of the model selection
function. The overall time complexity of the two-step pipeline
is determined by the slower of the two steps. If the first step is
at least quadratic, then the pipeline is as well (using either linear
or quadratic time model selection in the second step). However,
if the first step is sub-quadratic, then we expect that our linear
time algorithm in the second step should result in speedups.

4.2.1. Simulated Data for Which Proposed Linear Time
Algorithm Results in Speedups

For the first step, we therefore use the log-linear binary seg-
mentation algorithm, which inputs a data sequence z ∈ R

p,
and computes an approximate solution to (26). The binary
segmentation algorithm computes the full path of N = p models
with corresponding loss values L1, . . . , LN in O(N log N) time
on average (Scott and Knott 1974; Truong, Oudre, and Vayatis
2018). For each dataset size N ∈ {102, . . . , 105}, we generate
synthetic data sequences zj = sin(j)+j/N, for all j ∈ {1, . . . , N}.
Note that these synthetic data are not meant to be typical or
representative changepoint problems; instead they are meant to
illustrate a situation for which our linear time model selection
algorithm results in speedups over the previous quadratic time
algorithm. Figure 3 (left) shows timings of binary segmen-
tation alone (binseg), exact model selection algorithms alone
(linear, quadratic), and two-step pipelines (binseg.linear, bin-
seg.quadratic), on an Intel T2390 1.86GHz CPU. As expected,
our proposed linear time algorithm is orders of magnitude faster
than the previous quadratic time algorithm (when run alone,
and also in the two-step pipeline). For example, for N = 105

data, the binseg.linear pipeline takes about 3 seconds, whereas
binseg.quadratic takes about 2 min. More generally, such tim-
ings are typical for any data for which binary segmentation
runs in log-linear time, and the number of selected models MN
increases with the dataset size N (second column of Figure 4i).

4.2.2. Simulated Data for Which Proposed Linear Time
Algorithm Results in No Speedups

However, there are other kinds of data for which our approach
are no faster than the quadratic baseline (other columns
of Figure 4). For example, when binary segmentation runs
in quadratic time, then our linear time model selection
algorithm offers no speedups to the overall pipeline (third
and fourth columns of Figure 4). Also, since the previous
(worst-case quadratic) algorithm achieves its best case linear
time complexity when the number of selected models MN is
small/constant, then our proposed algorithm offers no speedups
in this case (first columns of Figure 4). Overall, we have shown
that for some datasets, our linear time algorithm provides
substantial speedups relative to the previous quadratic time
algorithm.

4.2.3. Real Data for Which Proposed Linear Algorithm is
Faster Than Grid Search

Another baseline algorithm for computing a representation of
the model selection function is a naïve approximate grid search
over G penalties λ, which takes O(NG) time. We expected this
baseline to perform poorly in the context of large N and large G,
so we performed timings on a large chipseq dataset from the
UCI repository (Newman and Merz 1998). We first computed a
regularization path of N = 287,443 optimal changepoint mod-
els for a sequence of p = 1,656,457 data, and then performed
timings of the model selection algorithms on the resulting N loss
values. We observed that our proposed linear time algorithm
is always faster than approximate grid search with at least 10
grid points (Figure 3, right). For example, the approximate
grid search takes almost 2 min for N = 10,000 grid points,
whereas the proposed exact linear time algorithm takes only
27 milliseconds. Overall these data indicate that the proposed
linear time algorithm is indeed faster than the two baselines in
large data.

Figure 3. The proposed exact linear time algorithm is orders of magnitude faster than the previous exact quadratic time algorithm and naïve approximate grid search.
Left: the two exact algorithms compute the same result, but the proposed linear time algorithm is orders of magnitude faster, even when time to compute loss values via
binary segmentation (binseg) is included in the timing (lines/bands for mean/SD over 5 timings). Right: when used on loss values from N = 28, 7443 optimal changepoint
models for one genomic data sequence, the proposed exact linear time algorithm is always faster than approximate grid search with at least 10 points (points/segments
for mean/SD over 5 timings).

320 J. VARGOVICH AND T. D. HOCKING

Figure 4. Binary segmentation (Step 1) followed by exact model selection (Step 2) was run on four synthetic data sequences (panels from left to right). Both model selection
algorithms (worst-case quadratic, and proposed worst-case linear time) output the exact path of selected models. Bottom: when there are few selected models (first and
third columns) the quadratic algorithm achieves its best case linear time complexity; when there are many selected models (second and fourth columns) it achieves the
worst-case quadratic time complexity. Top: total timings over both steps show that the linear time algorithm offers substantial speedups when binary segementation
achieves its best-case log-linear time complexity, and there are many selected models (second column).

Figure 5. Four-fold cross-validation to measure prediction accuracy on held-out test data increases as a function of number of points used in approximate grid search
algorithm (red line/band); it takes 10–100 grid points to achieve the maximum accuracy in each dataset (panels), which is also achieved by the proposed linear time exact
algorithm (black point/error bar on right).

5. Real Data Applications and Comparisons

5.1. Prediction Accuracy in Supervised Changepoint
Problems

In this section, we aim to demonstrate that the proposed
exact algorithm results in more accurate predictions than
a naïve approximate grid search. To examine the accuracy
of our algorithm, we consider several supervised change-
point detection problems from the UCI chipseq data
(https://archive.ics.uci.edu/ml/datasets/chipseq), which con-
tain labels that indicate the presence/absence of changepoints
in particular data subsets. Accurate changepoint detection in
these data is important in order to characterize active/inactive
regions in the human epigenome.

Here, we give a brief summary of the supervised learning
framework for changepoint detection; for details, see Hocking
et al. (2013). Each observation i is represented by a numeric

data vector/sequence zi along with a corresponding label set �i.
We compute a feature vector xi then learn a penalty function
f (xi) = log λi which results in a model θ̂ (λi). The goal is to
learn a function f that results in minimal errors with respect
to the labels �i in test data sequences. In this context there is
a model selection function k∗

i which is specific to each data
sequence i, and is used in two places during the learning and
prediction. First, it is used to compute a learning target yi which
is an interval of optimal penalty values for each training data
sequence i. Second, it is used to compute the predicted model
θ̂ (λi) given a predicted penalty λi. We learn a linear penalty
function f as previously described (Hocking et al. 2013), using
intervals yi computed by either our exact algorithm or a naïve
approximate grid search with a variable number of penalties λ.

We performed 4-fold cross-validation in five different labeled
datasets (panels in Figure 5). We observed in each dataset that
it takes 10–100 penalties λ in the grid search to achieve the

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 321

maximum number of correctly predicted labels, which was also
achieved by the proposed exact algorithm. Overall these data
provide empirical evidence that, in the context of supervised
changepoint detection problems, using an exact representation
of the model selection function results in more accurate pre-
dictions than using an approximate representation obtained via
grid search.

5.2. Speed Comparison With Previous CROPS Algorithm

The goal of this section is to demonstrate that the proposed algo-
rithm achieves similar time complexity to the existing CROPS
algorithm (Haynes, Eckley, and Fearnhead 2017), in the con-
text of optimal changepoint detection. As mentioned in Sec-
tion 1.1, our proposed algorithm should yield the same result
as the previous CROPS algorithm when computing the full
path of optimal changepoint models for a given data sequence.
We used 10 real cancer copy number data sequences from R
package neuroblastoma, ranging in size from N = 2 to
N = 5937 data. In these data there are abrupt changes in
mean, so we used a normal model with change in mean and
constant variance. For each dataset, we computed timings for
three algorithms: (i) CROPS with PELT as implemented in
changepoint::cpt.mean in R, (ii) PDPA as implemented
in jointseg::Fpsn in R, and (iii) our proposed exact linear
time model selection algorithm. We expected that for com-
puting the full path of models, PDPA combined with model
selection should have similar asymptotic timings to the CROPS
with PELT approach. Consistent with these expectations, we
observed that the computation times of CROPS and PDPA
are asymptotically similar, with PDPA being slightly faster by
constant factors (Figure 6). We furthermore observed that our
proposed model selection algorithm, when applied to the loss
values computed using the PDPA, was much faster than the
other algorithms for sequences with at least 100 data. Overall
these data suggest that our proposed approach using PDPA with
linear time model selection is comparable to CROPS in terms of
empirical time complexity.

Figure 6. Computation time of proposed linear time model selection algorithm
and PDPA/CROPS algorithms for computing optimal changepoint models.

5.3. Applications to Other Problems

In this section, the goal was to show the applicability of our
proposed algorithm to problems other than changepoint detec-
tion (Table 1). The first example problem was clustering, for
which used the K-means algorithm to compute a sequence of
models between k = 1 and 200 clusters on the zip test data1

(these are 2007 images of handwritten digits, each with 256
features/pixels, and there are ten classes). We used the total
square loss between data points and cluster centers as the loss Lk
input to our model selection algorithm (Figure 7, left). The sec-
ond example problem was dimensionality reduction, for which
we used principal components analysis (PCA) to compute a
sequence of models from k = 0 to 256 components on the zip
test data, then we used the total square loss between the data and
model predictions as the loss Lk input to our model selection
algorithm (Figure 7, center). The third example problem was
best subset regression, for which we used logistic regression on
the spam data (4601 observations, 57 features, binary classifi-
cation). We used greedy forward stepwise regression, starting
with none of the 57 features, then at each step adding the feature
which resulted in the best logistic loss decrease on the train
set. This resulted in a sequence of models from k = 0 to 57
features, and we used the total logistic loss, Lk, as input to our
model selection algorithm (Figure 7, right). In each example our
proposed model selection algorithm returned a model selection
function that maps penalty values λ ≥ 0 to model sizes k. In two
of the problems (K-means and logistic regression), the model
selection resulted in discarding some model sizes k which were
not optimal for any penalty values λ, and in one problem (PCA)
the result was that all model sizes k were selected for at least
one penalty λ value. Overall these data show that our proposed
algorithm can be applied to various different learning problems
in order to compute the exact model selection function.

6. Discussion and Conclusions

For learning problems with �0 regularization, we proposed a
new dynamic programming algorithm for computing an exact
representation of the model selection function (4). By bound-
ing the number of iterations, we proved theoretically that the
algorithm is linear time in the worst case. In real and syn-
thetic data, we empirically validated these bounds, and showed
that the proposed linear time algorithm is orders of magnitude
faster than two baselines. We used cross-validation in super-
vised changepoint detection problems to show that the exact
representation provides more accurate predictions than the grid
search approximation baseline.

Our algorithm requires no special data structures and can
be efficiently implemented using arrays in standard C; our
free software implementation is available at https://github.com/
tdhock/penaltyLearning/ and as an R package with function
modelSelection (R Core Team 2021).

For reproducibility, we also provide the source code that
we used to make the figures in this article at https://github.
com/tdhock/changepoint-data-structure. For future work, we

1zip and spam data in this section from https://web.stanford.edu/~hastie/
ElemStatLearn/

https://github.com/tdhock/penaltyLearning/
https://github.com/tdhock/penaltyLearning/
https://github.com/tdhock/changepoint-data-structure
https://github.com/tdhock/changepoint-data-structure
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/

322 J. VARGOVICH AND T. D. HOCKING

Figure 7. Results of computing exact model selection function on three different algorithms and datasets (panels from left to right). Top: each algorithm returns a sequence
of models each with a corresponding loss value Lk for model size k. Bottom: the exact model selection function is the selected model size as a function of the (log) penalty.

would like to consider selecting models from a partial set
S ⊂ {1, . . . , N}, and develop an efficient algorithm for updating
an exact representation of the corresponding model selection
function.

References

Arlot, S., and Massart, P. (2009), “Data-Driven Calibration of Penalties for
Least-Squares Regression,” Journal of Machine Learning Research, 10,
245–279. [314,317]

Auger, I., and Lawrence, C. (1989), “Algorithms for the Optimal Identifica-
tion of Segment Neighborhoods,” Bulletin of Mathematical Biology, 51,
39–54. [313]

Bellman, R. (1961), “On the Approximation of Curves by Line Segments
Using Dynamic Programming,” Communications of the ACM, 4, 284.
[315]

Bertsimas, D., King, A., and Mazumder, R. (2016), “Best Subset Selection
Via a Modern Optimization Lens,” The Annals of Statistics, 44, 813–852.
[313]

Chen, S., Donoho, D., and Saunders, M. (1998), “Atomic Decomposition by
Basis Pursuit,” SIAM Journal on Scientific Computing, 20, 33–61. [313]

Davis, G., Mallat, S., and Zhang, Z. (1994), “Adaptive Time-Frequency
Decompositions With Matching Pursuit,” Wavelet Applications, 402,
402–413. [313]

Fan, J., and Li, R. (2001), “Variable Selection Via Nonconcave Penalized
Likelihood and Its Oracle Properties,” Journal of the American Statistical
Association, 96, 1348–1360. [313]

Haynes, K., Eckley, I. A., and Fearnhead, P. (2017), “Computationally
Efficient Changepoint Detection for a Range of Penalties,” Journal of
Computational and Graphical Statistics, 26, 134–143. [313,314,321]

Huang, S., and Wolkowicz, H. (2018), “Low-Rank Matrix Completion
Using Nuclear Norm Minimization and Facial Reduction,” Journal of
Global Optimization, 72, 5–26. [313]

Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P.,
Gwin, E., Sangtrakulcharoen, P., Tan, L., and Tsai, T. T. (2005), “An

Algorithm for Optimal Partitioning of Data on an Interval,” IEEE Signal
Processing Letters, 12, 105–108. [313]

Killick, R., Fearnhead, P., and Eckley, I. A. (2012), “Optimal Detection
of Changepoints With a Linear Computational Cost,” Journal of the
American Statistical Association, 107, 1590–1598. [314]

Lavielle, M. (2005), “Using Penalized Contrasts for the Change-Point
Problem,” Signal Processing, 85, 1501–1510. [314]

MacQueen, J. (1967), “Some Methods for Classification and Analysis of
Multivariate Observations,” in Proc. of the Fifth Berkeley Symp. on Math.
Stat. and Prob., pp. 281–297. [313]

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. (2016), “On
Optimal Multiple Changepoint Algorithms for Large Data,” Statistics
and Computing, 27, 519–533. [314]

Mallat, S., and Zhang, Z. (1993), “Matching Pursuits With Time-Frequency
Dictionaries,” IEEE Transactions on Signal Processing, 41, 3397–3415.
[313]

Mazumder, R., Friedman, J., and Hastie, T. (2011), “Sparsenet: Coordinate
Descent With Nonconvex Penalties,” Journal of the American Statistical
Association, 106, 1125–1138. [313]

Miller, A. (2002), Subset Selection in Regression (2nd ed.), Chapman and
Hall. [313]

Newman, C. L., Blake, D. J., and Merz, C. J. (1998), UCI Repository of
machine learning databases. University of California, Irvine, Dept. of
Information and Computer Sciences. [319]

PEGWiki. (2018), “Convex Hull Trick.” Available at: https://wcipeg.com/
wiki/Convex_hull_trick. [314]

Hocking, T., Rigaill, G., Vert, J.-P., and Bach, F. (2013), “Learning
Sparse Penalties for Change-Point Detection Using Max Margin Interval
Regression,” in Proc. 30th ICML, pp. 172–180. [314,317,320]

R Core Team. (2021), R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
Available at: https://www.R-project.org/. [321]

Rigaill, G. (2015), “A Pruned Dynamic Programming Algorithm to Recover
the Best Segmentations With 1 to Kmax Change-Points,” Journal de la
Société Française de la Statistique, 156, 180–205. [318]

https://wcipeg.com/wiki/Convex_hull_trick
https://wcipeg.com/wiki/Convex_hull_trick
https://www.R-project.org/

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 323

Schniter, P., Potter, L. C., and Ziniel, J. (2009), “Fast Bayesian Matching
Pursuit: Model Uncertainty and Parameter Estimation for Sparse Linear
Models,” IEEE Transactions on Signal Processing, 1–12. [313]

Scott, A., and Knott, M. (1974), “A Cluster Analysis Method for Grouping
Means in the Analysis of Variance,” Biometrics, 30, 507–512. [314,319]

Soussen, C., Idier, J., Brie, D., and Duan, J. (2010), “From Bernoulli-
Gaussian Deconvolution to Sparse Signal Restoration,” Technical
Report, 34pp. Available at: https://hal.archives-ouvertes.fr/hal-00443842.
[313]

Tibshirani, R. (1996), “Regression Shrinkage and Selection Via the Lasso,”
Journal of Royal Statistical Society, Series B, 58, 267–288. [313]

Truong, C., Oudre, L., and Vayatis, N. (2018), “A Review of Change Point
Detection Methods,” arXiv:1801.00718. [314,319]

van den Burg, G. J. J., Groenen, P. J. F., and Alfons, A. (2017), “SparseStep:
Approximating the Counting Norm for Sparse Regularization,” arXiv:
1701.06967. [313]

Zhang, C.-H. (2010), “Nearly Unbiased Variable Selection Under Minimax
Concave Penalty,” Annals of Statistics, 38, 894–942. [313]

https://hal.archives-ouvertes.fr/hal-00443842

	Abstract
	1. Introduction
	1.1. Existing Algorithms and Related Work
	1.2. Contributions and Organization

	2. Proposed Dynamic Programming Algorithm
	2.1. Exact Representation of a Piecewise Constant Function Using Breakpoints
	2.2. Dynamic Programming Update Rules
	2.3. Demonstration of Algorithm up to t=3
	2.4. Recursive Update Rules Are Optimal

	3. Linear Time Algorithm With Theoretical Complexity Analysis
	3.1. Proposed Linear Time Algorithm
	3.2. Previous Quadratic Algorithms
	3.3. Proof of Linear Time and Space Complexity

	4. Empirical Complexity Analysis
	4.1. Empirical Iteration Counts Are Consistent With Theoretical Bounds
	4.2. Empirical Timings Suggest Orders of Magnitude Speedups
	4.2.1. Simulated Data for Which Proposed Linear Time Algorithm Results in Speedups
	4.2.2. Simulated Data for Which Proposed Linear Time Algorithm Results in No Speedups
	4.2.3. Real Data for Which Proposed Linear Algorithm is Faster Than Grid Search

	5. Real Data Applications and Comparisons
	5.1. Prediction Accuracy in Supervised Changepoint Problems
	5.2. Speed Comparison With Previous CROPS Algorithm
	5.3. Applications to Other Problems

	6. Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

