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ABSTRACT

Noninvasive entomological insect monitoring often utilizes a
variety of tools such as LiDAR to gather information without
interfering with the insects in their habitat. These collection
methods often result in large amounts of data that can be te-
dious and lengthy to interpret and analyze. Machine learning
has been previously used in the past in order to analyze Li-
DAR images to detect insects, but often suffers from pitfalls
such as long training times and large computational power re-
quirements. In an attempt to offer an alternative that takes
little to no training on the data and much less computational
power, this paper looks at the use of changepoint detection
algorithms to analyze LiDAR images containing insects. By
analyzing the rows or columns of a LiDAR image, the algo-
rithms should be able to detect abrupt changes in the image
that would represent the insects. While not as accurate, the
changepoint detection algorithms give comparable results to
a machine learning algorithm tested on the same dataset with-
out the need for supervised training.

Index Terms— LiDAR, Changepoint Analysis, Anomaly
Detection

1. INTRODUCTION

1.1. Background

Entomological methods for the monitoring of insects tradi-
tionally uses manual inspection techniques such as traps [1]
or catching insects [2] in order to gather insects. These meth-
ods are often labor intensive, time-consuming, and disruptive
to the insects, thus leading to the use of noninvasive insect
monitoring with tools such as LiDAR [3]. These noninva-
sive methods can capture entomological information with-
out disrupting the insects in their habitat, while also reduc-
ing the amount of manual labor required for collecting insect
data. Previous work has been done using LiDAR to identify
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disease-carrying mosquitoes [4, 5] and characterizing agricul-
tural pests [6, 7]. Other pulsed LiDAR methods have been
developed specifically to detect the insect wingbeat modula-
tions [8, 9, 10]. However, much of the analysis of the in-
formation from these techniques often requires large amounts
of time and effort to manually analyze the information. Pre-
vious work has been done with the use of machine learning
algorithms to help automate the analysis of LiDAR images
and cut down on the amount of time it takes to analyze the
data [11, 12]. While these have been shown to be success-
ful, some of the many shortcomings of machine learning are
often long training times of algorithms and large amounts of
computational power required for the algorithms.

The contributions of this paper are to explore an al-
ternative way to analyze LiDAR images that requires far
less time and computational power than machine learning.
This paper shows work done on two different datasets of
insect-containing LiDAR images using two different change-
point detection algorithms, a graph-constrained change-
point detection algorithm, gfpop [13, 14], and MATLAB’s
findchangepts function.

1.2. Changepoint Detection

Changepoint detection algorithms are developed to detect
abrupt changes in a variety of values such as mean, variance,
or standard deviation. They are often utilized in fields such as
medicine, neuroscience or genomics where it is necessary to
find abrupt changes in large data sequences.While there are
a large number of changepoint detection algorithms, the two
that were used in this paper are gfpop (Graph Constrained
Functional Pruning Optimal Partitioning) [13, 14] and MAT-
LAB’s findchangepts function.

The first algorithm that was used was gfpop. This change-
point detection algorithm was proposed by Hocking et al. [13]
and later implemented into an R interface by Runge et al.
[14]. In gfpop, input data is analyzed based on of a user-
implemented graph with nodes to represent the various states
that the data could be in at any given point and penalized
edges representing the transitions between the various states.
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Fig. 1. Example LiDAR image containing three bees.
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Fig. 2. Example of an insect row and column

The algorithm has a variety of loss functions that can be uti-
lized as well as several different types of transition edges and
other edge parameters such as the penalty, decay, threshold
for biweight and Huber losses, and the slope for the Huber
robust loss. While the work in this paper only utilized the
penalty parameter, other applications are more likely to uti-
lize these parameters. The reason for using this algorithm is
due to the fact that the user could have a good idea of what the
dataset should look like prior to collection, allowing them to
quicky generate a graph and iterate through the dataset with
little to no training and testing outside of tweaking the penal-
ties on the edges.

MATLAB’s findchangepts function is a part of the
Signal Processing Toolbox and analyzes the input data to the
function while returning the most significant changes in the
data for several different types of statistics such as mean,
RMS value, or standard deviation.

2. METHODS

2.1. Datasets
2.1.1. Beehives Dataset

The first dataset used for both gfpop and findchangepts
is a set of LiDAR images taken from beehives located at
the Horticulture Farms of Montana State University in Boze-
man during June 2022. The dataset contains 4131 images
(178x1024), 1309 of which contain a bee based on labels

manually generated by five different people over the course
of a combined 35 hours. Each bee also has a confidence level,
ranging from 1 (less confident) to 5 (most confident). In these
images, the bee is often represented by a spike in energy if
the laser hit their body, or a series of smaller spikes in energy
if the laser hit the wings of the bee (see Fig. 1). In the case of
the latter, the frequency of the flutters of energy can show the
harmonics of the oscillating wings. Both types of spikes can
be seen in both the rows and columns (see Fig. 2).

2.1.2. Hyalite Creek Dataset

Both algorithms were further tested on previously taken Li-
DAR images of insects at Hyalite Creek outside of Bozeman,
MT during September 2020. This dataset contains 10,079 im-
ages (178x1024) that represent similar info to the beehives.
However, this dataset is far more sparse than the beehives
dataset, with only 172 of the 10,079 images labeled as con-
taining an insect, and with a large sum of those also labeled
only as maybe an insect. Similarly to the beehives, these im-
ages were manually labeled over a long period of time that
isn’t exactly known. Testing was done on this dataset in order
to allow a direct comparison to machine learning algorithms
that were tested on the dataset by Vannoy et al. [11].

2.2. Preprocessing

For the gfpop algorithm, the only preprocessing that was done
involved shifting any of the negative values present in the im-
age, mostly artifacts from the LiDAR return, to zero. Each
row or column, depending on which the algorithm was going
to be applied to, was then smoothed with a three point moving
mean window to reduce the open air noise and the noise at the
top of the rows containing an insect.

For the findchangepts algorithm, additional prepro-
cessing was performed. All of the rows that were guaranteed
to not contain an insect were removed. This was done by
splitting the row into eight windows and finding the average
of each. If all of these were less than 90% of the average of the
whole image, it was considered an empty row. Hard targets
were then removed in a similar fashion, this time checking
if each of the averages of the windows was greater than 0.8.
This value was chosen because the images were normalized
from O to 1. An additional threshold of 2.25*[Image Average]
was then applied in a similar fashion. Noisy rows were then
removed by dividing rows into 16 windows and finding their
average. The percent difference between each section was
found and if the difference was within 5% then the row was
considered insignificant and removed. A wavelet transform is
then performed on the remaining rows using the cwt func-
tion in order to distinguish between the remaining rows that
contain wings of insects and other targets. If the maximum
value that is returned is less than 0.4, the row is considered
unimportant. The remaining scalograms are then split into 8
sections and the average of each rectangle is found. If the
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percent different between them is less than 10%, then the row
is removed. If there were no rows remaining in the image, it
would be considered to have no insects.

2.3. gfpop

The main methodology of applying gfpop to the LiDAR im-
ages involved sending data through the algorithm with the
changepoint graph shown in Figure 3. Both the rows and
columns were sent through the algorithm to compare the re-
sults between the two, although the same graph and penalties
were used. The selected graph was designed to allow grad-
ual increases to the insect states, resulting in higher accuracy
as opposed to a single jump to the insect state and then back
down. To prevent the algorithms from continuously increas-
ing the state value, the graph is also specified to start and end
in the “air” state. Each state has a null edge on it which allows
the dataset to remain in the state that it is in if the changes in
the data aren’t significant enough to trigger a state change.
The increasing and decreasing states also both have an up
edge transition and a down edge transition respectively, which
is what lets the graph gradually increase to the peak, although
this is mostly only relevant in the analysis of the rows since
the insect columns are usually only three data points in the
series. Lastly, the top of the graph which represents the actual
insect has a penalty for decreasing back down from the peak.

After sending each row and column of the image through
the algorithm, it saves the location, state, and parameter of the
changepoints. After getting results back from the algorithm,
the parameter of any insect changepoints were checked on
whether they were double the mean of the row where the
changepoint was detected and 1.5 times the mean of the
overall image. This helped to remove any false positives
that can be attributed to noise in the air or hard targets that
were present in any of the images. Because the insect data
was normalized, while the beehive dataset uses voltages, the
penalty was set to 0.005 for the beehives dataset and 0.1 in the
Hyalite Creek dataset. These values were determined after
being trained on a handful of images.

2.4. MATLAB’s findchangepts

For MATLAB’s findchangepts, an algorithm using the
function was developed for both the bees and insects datasets
separately, mainly due to the fact that the insect dataset was
far more sparse than the bee dataset. For the insect algo-
rithm, the remaining rows from preprocessing were all put
into the cwt function, and the absolute value was calculated
for the 71x1024 matrix that resulted from it, along with the
maximum value of the matrix. Since peaks in the dataset
are desired, any value in the matrix below a threshold (.225
times the maximum value) was set to 0, and the matrix was
cropped to contain only the 40 top rows (other rows corre-
spond to lower frequencies that do not have wingbeat modu-
lation data) and normalized between 0 and 1. The average of
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Fig. 3. gfpop graph for insect detection on both datasets.

the remaining columns was stored into a vector and the matrix
was then smoothed and normalized again. This final vector
was then sent through the f indchangepts function. This
analyzes the mean of the input with a minimum threshold of
3.9. The original signal is then smoothed and normalized and
sent through the same function with a minimum threshold of
3. If no changes are found in this second result, there are no
insects present in that row. If changepoints are found, then
the changepoints of the scalogram and the original image are
compared to each other. If they are within 21 pixels of each
other, roughly a 2% difference, then the scalogram change-
point is kept, otherwise it is discarded. After this, the location
of the insect is found by finding the brightest points in the
scalogram, however this process only accommodates for two
insects per row. The locations of these insects are then saved,
although exact locations weren’t verified, only the overall im-
ages. After these locations are found, they are discarded if
they are over 605 pixels long or less than 15 pixels long. The
remaining changes are considered insects.

The bee algorithm is similar, with the same preprocess-
ing but with reduced thresholds since there were significantly
more changes in the bee dataset. The first changepoint thresh-
old was reduced from 3.9 to 2 and the second was reduced
from 3 to .8. The maximum length that a bee signal could
be was also increased from 605 pixels to 700. These rows
were then grouped by insect and the middle column of the
signal was found. It was then normalized and put into the
islocalmax function with a minimum prominence of .6.
If a peak was located at a row containing an insect signal it
was considered an insect.
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Fig. 4. Results from the beehives dataset.

3. RESULTS

The results of both algorithms were fairly comparable to one
another, and can also be compared to some supervised ma-
chine learning results in the case of the Hyalite Creek insect
dataset. The beehive results cannot be compared to any ma-
chine learning results due to the fact that no results from this
dataset have been published. For the MATLAB algorithm,
the results were found with a runtime of of 8066 seconds, re-
sulting in a 73.26% accuracy. Of the 1309 insect-containing
images, the algorithm detected 857 of them (65.47%). The
algorithm also resulted in 649 false positives. For the gfpop
algorithm on the rows, the results were compiled with a run-
time of 1733 seconds, resulting in an accuracy of 76.24%.
It was able to detect 1077 of the insect images, or 82.28%.
There were 747 false positives. When gfpop was applied to
the columns, it took a runtime of 2721 seconds, resulting in
an accuracy of 90.15% and correctly identifying 1059 of the
insect images, or 80.9%. It also resulted in 156 false positives.
For the Hyalite Creek dataset, the MATLAB algorithm
was able to identify 122 of the 172 insect-containing images,
or 71.1%, with a runtime of 14,474 seconds. It also incor-
rectly identified 196 images as insect-containing. For the gf-
pop algorithm on the rows, it properly identified 140 of the
insect-containing images, or 81.4%;, in a runtime of 4009 sec-
onds with 1137 false positives. When it was applied to the
columns, it found 106 of the insect-containing images with
a runtime of 5906 seconds and 1840 false positives. In the
case of the machine learning algorithms, specifically a neural
network, the algorithm identified 32 of the 44 insect images
that were in the testing set, or 72.7% respectively. When go-
ing over these results, accuracy was not considered due to the
fact that the dataset was so sparse that simply guessing that
there are no insects would result in an accuracy of 98%.

4. CONCLUSIONS AND FUTURE WORK

The results from the two algorithms were quite promising
and were able to accomplish the main goals of reducing com-
putational power and reduce the time it takes to analyze the
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Precision: 5.45%
Recall: 61.63%
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Predicted Class

Accuracy: 99.28%
Precision: 94.12%
Recall: 72.73%

Fig. 5. Results from the Hyalite Creek dataset.

data, while also generating comparable results to the machine
learning algorithms. The results between the two datasets
were comparable to each other, although the Hyalite Creek
dataset is far more sparse than the beehive dataset, which is
why the accuracy is significantly differet. Compared to the
35 hours that it took to manually label the beehive dataset,
and an even larger amount of time to label the Hyalite Creek
dataset, the changepoint algorithms were able to cut down on
the analysis time greatly. The analysis of the data could also
identify individual insects as opposed to images.

Future work for this will focus on improving the results
and attempting to use the algorithms as real-time detection
methods when taking LiDAR images. For gfpop, further test-
ing will involve making changes to the graphs and penal-
ties that are used, while also applying more in depth post-
processing to verify any of the rows or columns that were
marked as containing a bee. For findchangepts, future
work would involve improving preprocessing on the images
and adjusting thresholds for the function. The algorithm can
also benefit from using parallel processing in order to de-
crease the runtime of the algorithm as opposed to running it
linearly. The algorithm could also be tested on the voltage
matrices of the LiDAR images as opposed to the normalized
data. This would result in more consistent values between
each image for the air, hard targets, and bees. Since both
algorithms are also implemented in MATLAB, testing could
be done to use them as a real-time detection algorithm when
taking LiDAR images. Future work will also consider de-
veloping penalty learning algorithms, rather than using fixed
penalties, with gfpop [13].
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