
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Extending ggplot2 for Linked and Animated Web
Graphics

Carson Sievert, Susan VanderPlas, Jun Cai, Kevin Ferris, Faizan Uddin Fahad
Khan & Toby Dylan Hocking

To cite this article: Carson Sievert, Susan VanderPlas, Jun Cai, Kevin Ferris, Faizan Uddin
Fahad Khan & Toby Dylan Hocking (2019) Extending ggplot2 for Linked and Animated
Web Graphics, Journal of Computational and Graphical Statistics, 28:2, 299-308, DOI:
10.1080/10618600.2018.1513367

To link to this article: https://doi.org/10.1080/10618600.2018.1513367

View supplementary material

Published online: 14 Nov 2018.

Submit your article to this journal

Article views: 499

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2018.1513367
https://doi.org/10.1080/10618600.2018.1513367
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2018.1513367
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2018.1513367
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2018.1513367?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2018.1513367?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2018.1513367&domain=pdf&date_stamp=14 Nov 2018
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2018.1513367&domain=pdf&date_stamp=14 Nov 2018
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2018.1513367?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2018.1513367?src=pdf

https://doi.org/./..

Extending ggplot for Linked and AnimatedWeb Graphics

Carson Sievert a, Susan VanderPlasa, Jun Caib, Kevin Ferrisc, Faizan Uddin Fahad Khand, and Toby Dylan Hockinge

aDepartment of Statistics, Iowa State University, Ames, IA; bDepartment of Earth System Science, Tsinghua University, Haidian Qu, Beijing Shi, China;
cBaseball Operations Department, Tampa Bay Rays, St. Petersburg, FL; dDepartment of Computer Science & Engineering, IIT BHU, Varanasi,
Uttar Pradesh, India; eDepartment of Human Genetics, McGill University, Montreal, Quebec, Canada

ARTICLE HISTORY
Received August
Revised March

KEYWORDS
Animation; Exploratory data
analysis; Grammar of
graphics; Multiple linked
views; Statistical graphics;
Web technologies

ABSTRACT
Interactive web graphics are great for communication and knowledge sharing, but are difficult to leverage
during the exploratory phase of a data science workflow. Even before the web, interactive graphics
helped data analysts quickly gather insight from data, discover the unexpected, and develop better
model diagnostics. Although web technologies make interactive graphics more accessible, they are not
designed to fit inside an exploratory data analysis (EDA) workflow where rapid iteration between data
manipulation, modeling, and visualization must occur. To better facilitate exploratory web graphics that
are easily distributed, we need better interfaces between statistical computing environments (e.g., the
R language) and client-side web technologies. We propose the R package animint for rapid creation
of linked and animated web graphics through a simple extension of ggplot2’s implementation of the
Grammar of Graphics. The extension allows one to write ggplot2 code and produce a standalone web
page with multiple linked views. Supplementary material for this article is available online.

1. Introduction

For more than a half century now, statisticians have designed,
built, and used interactive graphics for exploring high-
dimensional data and better informing their modeling
process. In fact, the ASA maintains a video library (http://stat-
graphics.org/movies/) to document and demonstrate applica-
tions of instrumental interactive statistical graphics systems
such as PRIM-9 (Fisherkeller, Friedman, and Tukey 1988),
Data Viewer (Andreas et al. 1988), XGobi (Swayne, Cook,
and Buja 1998), GGobi (Cook and Swayne 2007), and Mon-
drian (Theus 2002). These, as well as other influential sys-
tems, such as LISP-STAT (Tierney 1990) and MANET (Unwin,
Hofmann, andHawkins 1996), all have a rich support for accom-
plishing awide variety of statistical analysis tasks, andmost were
developed before the web browser had rich graphics support.

All of these systems, as well as some more modern systems,
such as rggobi (Duncan, Wickham, and Swayne 2016),
iplots (Urbanek 2011), cranvas (Xie et al. 2013), loon
(Waddell and Oldford 2018), etc., require a heavy set of com-
putational dependencies to view or interact with graphics.
These requirements grant the freedom to leverage libraries
with sophisticated statistical functionality on-demand, but it
limits the ability to share or embed such graphics in a larger
document. Some of these systems allow users to create the
graphics from the command-line, which as Unwin and Hof-
mann (2009) pointed out, allows power users to combine the
strengths of a programming interface (e.g., precise, repeat-
able, fast, and extensible) with the strengths of a graphical
interface (e.g., intuitive, forgiving, and easy-to-use). Web

CONTACT Carson Sievert cpsievert@gmail.com Department of Statistics, Iowa State University, Ames, IA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JCGS.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

technologies can certainly be used to build a similar class of
system, but to capitalize on the key strengths of web tech-
nologies (e.g., accessible, portable, and composable), we must
be mindful of which technologies we are requiring in such a
system, and minimize those requirements whenever possible.

Generally speaking, web graphics that use purely client-side
technologies (i.e., HTML, SVG, CSS, and JavaScript) are
desired over client-server web applications because of their
relative ease of distribution and maintenance. This is why many
web-based graphing libraries like Vega (Trifacta 2014) work
entirely with client-side technologies. Unfortunately, client-side
technologies are not particularly well-suited for statistical com-
putation, which we often want to leverage via dynamic controls
in an interactive statistical graphics system. In this scenario, it
often makes sense to introduce a client-server infrastructure
to leverage functionality that is not natively supported by web
browsers (e.g., R, python, etc.).

Focusing solely on the R language, there are now numerous
ways to develop web applications, including the R package
shiny (RStudio 2013), which makes it easy for R users to
take their existing scripting workflow and wrap a web interface
around it. Shiny is great for quickly prototyping interactive
webpages that reexecute R code on-demand, but that flexibility
comes at the cost of requiring a complex web server framework,
which can be hard to scale, maintain, and secure sensitive
information. Unfortunately, all too often, a web application
framework is used to implement linked and animated graph-
ics that could more easily be described with an idiomatic R
interface which produces a purely client-side result.

© American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2019, VOL. 28, NO. 2, 299–308

https://doi.org/10.1080/10618600.2018.1513367
http://stat-graphics.org/movies/
mailto:cpsievert1@gmail.com
http://www.tandfonline.com/r/JCGS
http://www.tandfonline.com/r/JCGS

Figure . A graphical query of tips dataset. Left: TheclickSelects aesthetic designates a clickable geombar that can change a selection variable. Right: TheshowS-
elected aesthetic designates a geom point that responds by showing only the data which correspond to the current selection.

There are now many R packages that interface with purely
client-side graphing libraries and give users the option of
embedding these graphics in a larger web application. This
movement has made interactive graphics a lot more accessible
to newcomers and also allows power users to combine the
strengths of web technologies and statistical computing. In fact,
this is a large enough use case that the R package htmlwid-
gets (Vaidyanathan et al. 2018) was created to make it easier
to get these interfaces to work seamlessly in any context (e.g.,
shiny, rmarkdown, RStudio, terminal, Jupyter notebook,
etc.). In most cases, these R packages do not have great support
for linking views, meaning a callback to server-side R (e.g.,
shiny) is typically required for such a task. Very recently,
some htmlwidgets packages have gained crosstalk
(Cheng 2016) support for linking views with purely client-side
technologies, but the type of linking is purposefully restricted
(e.g., 1-to-1 transient linking) since it is very difficult to stan-
dardize an API for linking arbitrary libraries. We think this
is a great direction for exploratory graphics that are easily
distributed, but also hope to see more opinionated approaches
to this idea, like plotly (Sievert et al. 2018), which focus
more on statistical aggregations, missing values, and selection
sequences (Hofmann and Theus 1998).

We propose an extension of ggplot2’s layered Grammar
of Graphics API to create interactive web graphics that do not
require a callback to server-side R. The core idea lies in attach-
ing metadata to graphical marks that can be used to hide/show
subsets of data. The resulting framework is quite similar to what
Cook, Buja, and Swayne (2007) described as brushing in multi-
ple linked views as a database query. The assignment of data to
graphical marks is done through aesthetic mappings, which is a
term the Grammar of Graphics (Wilkinson et al. 2006) used for
mapping data to visual attributes (e.g., color, shape, x, y, etc.).
Typically aesthetic mappings are visual, meaning they can be
easily seen in a static graphic, but our proposed aesthetic map-
pings control interactive properties, so they are not necessarily
easily seen, but visual cues may be added to guide the user
interaction. To give a small example, Figure 1 depicts a graph-
ical query made by assigning metadata to graphical marks via
the clickSelects and showSelected aesthetics. These
aesthetics are essentially used to create a primary key between
two tables of data, and as the name clickSelects suggests,
queries are made by clicking directly on graphical marks, but
other aesthetics could be used to support other direct manip-
ulation events (e.g., hoverSelects, brushSelects,
etc.).

300 C. SIEVERT ET AL.

Table . New features that animint adds to the grammar of graphics. These features are explained in detail starting in Section ..

Feature Type Description

clickSelects aesthetic value(s) to select on click.
showSelected aesthetic value(s) attached to mark(s) that determine when they are shown.
key aesthetic value(s) attached to mark(s) for smooth transitions.
tooltip aesthetic information to display on hover.
href aesthetic URL link to open on click.
time option delay between animation frames.
duration option to specify smooth transitions.
first option what value(s) should be selected by default?
selector.types option should selections accumulate?
selectize option include a dropdown widget to set selection value(s) indirectly?

In addition to graphical queries, our extension supports
a number of other interactive features, including animation,
tooltips, and hyperlinks. A summary of these extensions and
relevant additional options are provided in Table 1. There are a
number of other options that can be used to control things spe-
cific to our implementation in the R package animint which
are included with the supplementary materials.

2. RelatedWork

In the last section, we motivated the need for R packages
that create linked interactive graphics using client-side web
technologies. We also proposed an extension to ggplot2’s
API that supports a class of graphical queries. To help further
explain where our work makes contributions to the field, this
section further explores related work.

It is important to acknowledge that ggplot2 is built on top
of the R package grid, a low-level graphics system, which is
now bundled with R itself (R Core Team 2017). Neither grid
nor base R graphics have strong support for handling user
interaction, which creates a need for add-on packages. There are
a number of approaches these packages take to rendering, each
with their own benefits and drawbacks. Traditionally, they build
on low-level R interfaces to graphical systems such as GTK+
(Lawrence and Lang 2010), Qt (Lawrence and Sarkar 2016), or
Java GUI frameworks (Urbanek 2016). In general, the resulting
system can be very fast and flexible, but sharing and repro-
ducing output is usually a problem due to the heavy software
requirements. Although there may be some sacrifices in perfor-
mance, using the modern web browser as a rendering platform
is more portable, accessible, and composable (i.e., graphics can
be embedded within larger frameworks/documents).

Base R does provide a scalable vector graphics (SVG) device,
svg(), via the Cairo graphics API (Cairo 2016). The R pack-
age SVGAnnotation provides functionality to post-process
svg() output to add interactive and dynamic features (Nolan
and Lang 2012). This is a powerful approach, since in theory it
can work with any R graphics, but the package is self-described
as a proof-of-concept which reverse engineers poorly struc-
tured svg() output. As a result, it is not straightforward to
extend this system for linked data visualizations with advanced
functionality (multiple layers, multiple plots, multiple selection
variables).

The lack of well-structured SVG for R graphicsmotivated the
gridSVG package which provides sensible structuring of SVG
output for grid graphics (Murrell and Potter 2015). This pack-
age also provides some low-level tools for animating or adding
interactive features, where grid objects must be referenced by

name. As a result, use of this interface to add interactivity to
a ggplot2 plot requires understanding of the grid naming
scheme ggplot2 uses internally. An interface where interac-
tivity can be expressed by referencing the data to be visualized,
rather than the building blocks of the graphics system, would
be preferable since the former interface is decoupled from the
implementation and does not require knowledge of grid.

In terms of the animationAPI, the R packagegganimate is
very similar to our system (Robinson 2016). It directly extends
ggplot2 by adding a new aesthetic, named frame, which
splits the data into subsets (one for each unique value of the
frame variable), produces a static plot for each subset, and uses
the animation package to combine the images into a key
frame animation (Xie 2013). This is quite similar but not as
flexible as our system’s support for animation, which we fully
describe in Section 3.5. Either system has the ability to control
the amount of time that a given frame is displayed, but our
system can also animate the transition between frames via
the d3.transition() API (Bostock, Oglevetsky, and Heer
2011). Smooth transitions help the animation viewer track posi-
tions between frames, which is useful inmany scenarios, such as
the World Bank example in Section 3.2. The tweenr package
is similar in scope to d3.transition(), but operates on
data frames instead of SVG elements (Pedersen 2016). One
could actually use tweenr to implement smooth transitions
in animint, but it would require precomputing, storing, and
loading an unnecessarily large amount of data.

Smooth transitions are also useful for touring data—a suite of
statistical techniques for visualization of high-dimensional data.
The supplementarymaterials show how to implement a tour in a
standalone web page viaanimint and tourr (Wickham et al.
2011), but it is worth noting that projections (i.e., animation
frames) must be precomputed, so the functionality is limited
compared to other solutions. The open-source software GGobi
is currently the most fully featured toolkit for touring data and
has support for interactive techniques such as linking, zooming,
panning, and identifying (Cook and Swayne 2007). The R
package rggobi provides an R interface to GGobi’s graphical
interface, but it unfortunately has many software requirements.
Furthermore, sharing the interactive versions of these graphics
are not possible. The R package cranvas aims to be the suc-
cessor to GGobi, with support for similar interactive techniques,
but with a more flexible interface for describing plots inspired
by the Grammar of Graphics. Cranvas also has many software
requirements which limits its portability and accessibility.

The R package ggvis (Chang and Wickham 2015) is
another interactive web graphics interface inspired by the
Grammar of Graphics. It does not directly extend ggplot2,

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 301

but instead provides a brand new purely functional interface
which is designed with interactive graphics in mind. It currently
relies on Vega to render the SVG graphics from JSON, and the
R package shiny to enable many of its interactive capabilities
(RStudio 2013). The interface gives tremendous power to R
users, as it allows one to write R functions to handle user events.
This power often comes with a cost, though, as ggvis uses
callbacks to R via shiny to accomplish interactivity such as
linked brushing. As we outline in our supplementary materials,
our system does not require server-side R, but it can also be
used inside shiny web applications.

Another R package for interactive graphics is iplots
(Urbanek 2011), which has several important differences com-
pared to animint. Brushing of linked iplots is supported for
single-layer plots such as scatterplots or barplots, but it is not
easy to define new multi-layer interactive plots. Furthermore
since iplots does not use the Grammar of Graphics, it is
difficult to create legends and multi-panel plots. Finally, since
iplots requires compiled C++ code for rendering on the
local machine, its graphics are not as easy to share as animint
graphics which can be viewed in a web browser.

3. Extending the Layered Grammar of Graphics

In this section, we describe in detail our extension ofggplot2’s
layered grammar of graphics implementation (Wickham 2010).
In ggplot2, there are five essential components that define
a layer of graphical makings: data, mappings (i.e., aesthetics),
geometry, statistic, and position. These simple components are
easy to understand in isolation and can be combined in many
ways to express a wide array of graphics. For a simple example,
here is one way to create a scatterplot in ggplot2 of variables
named <X> and <Y> in <DATA>:

For every geometry, ggplot2 provides a convenient wrap-
per around layer() which provides sensible defaults for the
statistic and position (in this case, both are “identity”):

A single ggplot2 plot can be comprised of multiple layers,
and different layers can correspond to different data. Since each
graphical mark within a ggplot2 layer corresponds to one (or

more) observations in <DATA>, aesthetic mappings provide a
mechanism formapping graphical selections to the original data
(and vice-versa) which is essential to any interactive graphics
system (Wickham et al. 2010). Thus, given a way to combine
multiple ggplot2 plots into a single view, this design can be
extended to support a notion of multiple linked views, as those
discussed byAhlberg,Williamson, and Shneiderman (1991) and
Buja et al. (1991).

3.1. Linking Views Via Aesthetic Mappings

Cook and Swayne (2007) used SQL queries to formalize the
linked views infrastructure discussed in Ahlberg, Williamson,
and Shneiderman (1991) and Buja et al. (1991).We use a similar
approach to show how aesthetic mappings can be used to assign
data values to graphical marks via ggplot2 to support similar
graphical queries. It is worth noting that, since these aesthetics
effectively define a set of database queries that are known at
print time, these queries can be made by direct manipulation of
graphical marks and/or indirect manipulation via a dropdown
widget, as discussed in Section 3.4. It is also worth noting that
these aesthetics could be defined in such a way that they are
not solely restricted to any particular direct manipulation event
(e.g., mouse click), but for sake of demonstration, we restrict
focus to our current animint implementation, which has
clickSelects and showSelected aesthetics.

Consider the R code below which uses these aesthetics
to create the interactive graphic depicted in Figure 1.1 The
geom_bar() layer in the left-hand panel is linked to the 2nd
geom_point() layer in the right-hand panel since the
clickSelects and showSelected aesthetics are mapped
to a common variable, sex. This effectively creates a primary
key relationship between the two tables used to render these
graphical layers. The first geom_point() layer intentionally
does not have a showSelected mapping, but has a bit of
alpha transparency, so all the data are shown in light-gray, and
the current selection is portrayed in black:

In Figure 1, there is only one selection variable whichwe refer
to as selected_sex. This variable is updated whenever a bar
is clicked which triggers our system to perform an SQL query of
the form:

In this example, selected_sex is either Male or
Female (a single selected value), but as we show in later exam-
ples, a selection set can also be multiple values. Although the
clickSelects aesthetic is tied to a mouse click event, other

 Interactive versions of all of the figures mentioned in this article are available
with the supplementary materials, and may be viewed at http://members.cbio.
mines-paristech.fr/thocking/animint-paper-figures/.

302 C. SIEVERT ET AL.

http://members.cbio.mines-paristech.fr/thocking/animint-paper-figures/

Figure . An interactive animation of World Bank demographic data of several countries, designed using clickSelects and showSelected aesthetics (top). Left:
A multiple time series from to of life expectancy, with bold lines showing the selected countries and a vertical gray tallrect showing the selected year. Right: A
scatterplot of life expectancy versus fertility rate of all countries. The legend and text elements show the current selection: year= , country= {United States, Vietnam},
and region= {East Asia & Pacific, North America}.

aesthetics could easily be created to support other selection
events, such as hover or click+drag. Statistically speaking, this
type of interaction is useful for navigating through joint dis-
tributions conditional upon discrete values. In this sense, our
extension is closely related to trellis displays (Becker, Cleveland,
and Shyu 2010) and linked scatterplot brushing (Becker and
Cleveland 1987). The major differences are that our condition-
ing is layer-specific (not plot-specific), is not tied to a particular
geometry, and can be controlled through direct manipulation or
animation controls.

3.2. World Bank Example

This section uses the linking framework introduced in the previ-
ous section to visualize a more complex dataset provided by the
World Bank. The interactive version of Figure 2 fosters explo-
ration of the relationship between life expectancy and fertility
rate over time for 205 countries. The year 1979 and the coun-
tries United States and Vietnam are selected in the static version
of Figure 2, but readers are encouraged to change the selection
by clicking on the interactive version, which is provided in the
supplementarymaterials. The interactive version alsomakes use
of additional animation options (explained later in Section 3.5),
allowing us to visualize the evolution of the relationship between
life expectancy and fertility rate.

We anticipate that some ggplot2 users will be able to
reverse engineer the code which creates Figure 2, simply by
looking at it. In fact, this is a big reason why ggplot2 is so
widely used: it helps minimize the amount of time required to
translate an idea for a figure into computer code. Note that,
in the left-hand plot of Figure 2, we have a time series of the
life expectancy where each line is a country (i.e., we group by
country) and lines are colored by region. By clicking on a line,
we also want the country label to appear in the right-hand plot,
so we also need to set clickSelects=country. Finally, by

setting showSelected=region and color=region, we
can hide/show lines by clicking on the color legend entries.

To help point out the currently selected year, we also provide
a visual cue in the form of tall rectangles to the time series plot.
These tall rectangles will also serve as a way to directly mod-
ify the selected year. The tallrect geometry is a special case of a
rectangle that automatically spans the entire vertical range, so
we just have to specify the horizontal range via xmin and xmax
aesthetics. Also, since the layered grammar of graphics allows
for different data in each layer, we supply a data frame with just
the unique years in the entire data for this layer:

As for the right-hand plot in Figure 2, there are three
layers: a point layer for countries, a text layer for countries,
and a text layer to display the selected year. By clicking on
a point, we want to display the country text label and high-
light the corresponding time series on the left-hand plot, so

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 303

we set clickSelects=country in this layer. Further-
more, we only want to show the points for the selected year
and region, so we also need showSelected=year and
showSelected2=region.

Note that any aesthetics containing the substring showS-
elected (including showSelected2) are interpreted as
showSelected variables, and combined together using the
intersection operation. In the example above, that means that
a point will be drawn for the currently selected combination of
year and region, as in the following SQL query,

Below, the text layer for annotating selected countries is
essentially the same as the point layer, exceptwe assign the coun-
try name to the label aesthetic:

Lastly, to help identify the selected year when viewing the
scatterplot, we add another layer of text at a fixed location.

In summary, this section shows an example of how the pro-
posed clickSelects and showSelected aesthetics can
be used with several different geoms (line, point, text, tallrect),
each of which can potentially display a different dataset. In each
case, we use clickSelects to declare a geom that when
clicked updates the current selection, and we use showSe-
lected to declare a geom which responds to such changes

by updating the set of displayed data. In the next sections, we
further explore options that allow us to accumulate selections,
update selections indirectly, and automate selection updates.

3.3. Linking andMultiple Selection

Linking is declared in R code by putting ggplots with common
clickSelects and showSelected aesthetics together in
a list. For example, we can link the ggplots from the previous
section by including them together in the following list:

Linking is accomplished because the two ggplots declared
clickSelects and showSelected aesthetics that refer to
commonvariable names (region,year,country). For each
such selection variable, our system updates the set of selected
values in response to mouse clicks on clickSelects geoms,
and then updates the corresponding data which is displayed for
showSelected geoms.

Note that the viz list above can also contain numerous
options which are listed in Table 1. For example, the selec-
tor.types option controls whether or not selections for a
given variable accumulate (single or multiple selected values).
This sort of logic has also been interpreted as transient versus
persistent selection (Cook and Swayne 2007).

The code above declares year as a single selection variable,
which means that only a single year may be selected at a time
(clicking a geom with clickSelects=year will change
the selection to the corresponding year). The country and
region variables are declared as multiple selection variables,
which can have multiple selected values at a time (clicking a
geom with clickSelects=country will add/remove that
country to/from the selection set).

3.4. Direct Versus Indirect Manipulation

Graphical queries via direct manipulation require direct user
interaction with graphical elements, but it is not necessarily easy
to find value(s) of interest in the graphical space. For this rea-
son, animint also provides dropdown widgets for executing
graphical queries via indirect manipulation. For example, when
viewing the interactive version of Figure 2, suppose our goal is
to compare the United States to Thailand. Direct manipulation
is not very useful in this case since it is not necessarily easy to
identify and select these countries based solely on the graphics.

304 C. SIEVERT ET AL.

Figure . Using dropdown widget(s) to execute graphical queries via indirect
manipulation. This example shows howone could search for and highlight Thailand
in Figure .

Figure 3 shows what the user sees after typing “th” in the search
box. Note that these dropdowns support selection of multiple
values and are coordinated with selections made via direct
manipulation.

3.5. Animation and Smooth Transitions

Animation is declared using the time option, which specifies a
selection variable that will be automatically updated over time,
as well as a time delay in milliseconds. The code below declares
the year variable to be animated every 3 sec:

Animation is useful in the World Bank data visualization
because it shows how the bi-variate relationship between fertil-
ity rate and life expectancy changes over time. Animation clearly
shows how many countries progress from low life expectancy
and high fertility rate in early years, to high life expectancy and
low fertility rate in later years.

Finally, the duration option specifies the amount of time
used to smoothly transition between selections (with linear eas-
ing). Smooth transitions help the viewer track geoms before and
after an update to the selection set. For example, in the code
below we declare a 1 sec smooth transition on the year vari-
able, to more easily track the points on the scatterplot:

Note that for accurate interpretation of smooth transitions,
the new key aesthetic must be specified. The key aesthetic
is used to match data elements before and after the smooth
transition. In the World Bank example, we would need to
specify aes(key=country) for the points and text in the
scatterplot.

3.6. Storing and Restoring state

When sharing an interactive visualization with others, it can
often be helpful to share interesting state(s) of the visualization.
In animint, states can be serialized in a URL link and/or spec-
ified at the command line via the first option. The code below
declares that the first selection of the country variable is the
set of two countries, United States and Vietnam:

3.7. Compiling and Rendering

Supplying the viz list of ggplots and rendering options to the
animint2dir() function will save all the files necessary for
rendering the visualization:

As shown in supplementary Figure 1, the animint system
consists of two parts: the compiler and the renderer. The com-
piler is R code that converts a list of ggplots and options to a
JSON plot meta-data file and a tab-separated values (TSV) file
database. The renderer consists of HTML and JavaScript
files, which can be easily hosted along with the TSV and
JSON files on any web server. The interactive plots can be
viewed by opening the index.html page in any modern
web browser. Note that animint currently depends on a fork
of ggplot2 (https://github.com/faizan-khan-iit/ggplot2/tree/
validate-params) that contains someminormodifications which
are needed to support interactive rendering onweb pages. Addi-
tional implementation details are available in the supplementary
materials.

4. Exploring Scope with Examples

This section attempts to demonstrate the range of visualizations
that are possible with animint. In particular because of its
support for interaction and animation, it excels at display of
interactive maps with time-varying data. We give two such
examples below. A handful of other examples are provided with
the supplementary materials.

4.1. Tornadoes in the United States

One of the strong points of the system we propose is display
of multi-layer plots such as maps with time-varying data. For
example, Figure 4 shows a visualization of U.S. tornado data
from 1950 to 2012. This data visualization consists of two
multi-layer plots with two interaction variables, year and
state.

The left plot is a map which shows state borders using
a polygon with clickSelects=state. The currently
selected state is shown using semitransparency, and other
states can be selected by clicking them. The state map plot uses
geoms with showSelected=year to show tornado paths
(segment geom) and endpoints (point geom) for the currently
selected year (which is emphasized with a text geom above the
map).

The right plot uses several geoms to show details for
the currently selected state and year. A bar geom shows
a time series of tornado counts for the selected state
(showSelected=state), which can be clicked to change
the currently selected year (clickSelects=year). A text
geom at the top of the plot shows the currently selected state
(showSelected=state), and a text geom at the bottom
emphasizes the tornado count for the selected year (using
showSelected variables for both state and year).

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 305

https://github.com/faizan-khan-iit/ggplot2/tree/validate-params

Figure . Interactive animation of U.S. tornadoes from to . This figure depicts a scenario where the user queried Texas (by clicking themap), and the year (by
clicking the bar chart). In addition to the graphical elements being highlighted as a visual clue of what query is being made, this visualization includes dynamic text labels
reflecting the query.

These interactions can be useful for discovering patterns in
the data, and for suggesting models that can describe or predict
tornado paths.

4.2. Central American Climate Data

A more complex map data visualization example is shown in
Figure 5,which depicts climate time series data observed inCen-
tral America. There are two interaction variables, time and
region.

Two maps in the upper left display borders of the coun-
tries in and near Central America. Unlike the previous exam-
ple with U.S. states, the country borders are static (clicking
has no effect). For the currently selected time, rect geoms with
showSelected=time show the spatial distribution of sea
surface temperature as well as its deviation from the monthly
norm. Since clickSelects=region is specified, clicking
a rect changes the currently selected region, which is empha-
sized with a black border. These plots facilitate visualization of
the spatial distribution of the climate variables, and how they
change over time.

The plots below the maps use lines to show time series
of the climate variables. Since clickSelects=region is
specified, clicking a line changes the currently selected region,
which is emphasized with a purple color. A semitransparent tall-
rect shows the currently selected time; other tallrects can be
clicked to update the time (clickSelects=time). These
plots make it easy to select different times and regions, and to
make comparisons between times and regions.

Scatterplots on the right use showSelected variables
with point and text geoms, to show the joint distribution of
the two temperature variables for the selected time (top) and
region (bottom). The plots use clickSelects to emphasize
the currently selected region (top) and time (bottom), and
are useful for visualizing normality and outliers in the joint
distribution.

5. Limitations and FutureWork

Our implementation of the ggplot2 extension proposed in
Section 3.1 has a number of limitations. Most notably, an inter-
active statistical graphics system should be able to dynamically
compute statistical aggregations based on new user input (e.g.,
compute a new linear model based on a set of newly brushed
points). In theory, the extension can support dynamic statisti-
cal aggregations specified via a ggplot2 layer, but it is not yet
clear to us how one would translate every possible R function to
JavaScript, so this is not currently implemented in ani-
mint. It may be worthwhile exploring compilation of R func-
tions using a technology like WebAssembly so that the web
browser can run themwithout an externalweb server runningR.
Nevertheless, it is currently possible toworkaround this problem
somewhat by precomputing every possible aggregation ahead of
time. (If the total number of selection states is fairly small, this
approach works, but it does not scale very well. For an example
of precomputing states and exploring those limitations, see the
supplementary materials.)

Numerous other limitations in our current implementation
derive from the fact that some plot features are computed once
during the compilation step, and remain static on a rendered
plot. For example, users are not able to dynamically alter vari-
able mappings, transformations, or axis scaling. Most of these
limitations can be resolved by adding interactive widgets to
recompile plot(s) via a callback to R. For this reason, ani-
mint makes it easy to embed visualizations inside of shiny
web applications—refer to the supplementary materials for an
example.

Other limitations could also be addressed by adding a few
other aesthetics or options to the list provided in Table 1. More
specifically, one could add support for more forms of direct
manipulation by adding hoverSelects and brushSe-
lects aesthetics, option(s) for more control over the selection
styling (e.g., color, opacity, etc.), and options for providing

306 C. SIEVERT ET AL.

Figure . Visualization containing six linked, interactive, animated plots of Central American climate data. Top: For the selected time (December), maps displaying the
spatial distribution of two temperature variables, and a scatterplot of these two variables. The selected region is displayed with a black outline, and can be changed by
clicking a rect on the map or a point on the scatterplot. Bottom: Time series of the two temperature variables with the selected region shown in violet, and a scatterplot
of all times for that region. The selected time can be changed by clicking a background tallrect on a time series or a point on the scatterplot. The selected region can be
changed by clicking a line on a time series.

more visual cues for graphical objects that trigger graphical
queries (currently, hovering on such objects will change their
transparency). There are other types of interaction that could
be added without adding to the extension at all (e.g., zooming,
panning, and plot resizing).

6. Conclusion

Interactive graphics can augment data exploration, and lead to
better understanding by allowing one to quickly answer follow-
up questions; but to be practically useful, one should be able
to iterate quickly and share easily. Interactive statistical graph-
ics have traditionally had heavy software requirements since
it is common to dynamically execute statistical aggregations
based on user input. However, if we wish to bring interactive
statistical graphics to the web in a responsible way, we should
explore how we can enable common tasks such as animation
and linked views without a complex client–server infrastruc-
ture. Our simple extension of ggplot2’s layered grammar of
graphics enables a set of common interactive tasks (e.g., graph-
ical queries in multiple views, animation, tooltips, hyperlinks,
etc.) without requiring a complex client–server infrastructure.

SupplementaryMaterials

Interactive Figures and Reproducible Research Statement

The source code to create this article and its figures is online at
https://github.com/tdhock/animint-paper/ and the interactive figures can be

viewed at http://members.cbio.mines-paristech.fr/thocking/animint-paper-
figures/.

Acknowledgments

The authors thank animint users MC Du Plessis, Song Liu, Nikoleta
Juretic, and Eric Audemard who have contributed constructive criticism
and helped its development.

ORCID

Carson Sievert http://orcid.org/0000-0002-4958-2844

References

Ahlberg, C., Williamson, C., and Shneiderman, B. (1991), “Dynamic
Queries for Information Exploration: An Implementation and Evalua-
tion,” in ACMChi ’92 Conference Proceedings (Vol. 21), ACM, pp. 619–
626. []

Andreas, B., Hurley, C., Asimov, D., andMcDonald, J. A. (1988), “Elements
of aViewing Pipeline forDataAnalysis,” inDynamicGraphics for Statis-
tics, eds. William S. Cleveland and Marylyn E. McGill, Belmont, CA:
Wadsworth, Inc. []

Becker, R. A., and Cleveland, W. S. (1987), “Brushing Scatterplots,” Techno-
metrics, 29, 127–142. []

Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (2010), “The Visual Design
and Control of Trellis Displays,” Journal of Computational and Graphi-
cal Statistics, 19, 3–28. []

Bostock, M., Oglevetsky, V., and Heer, J. (2011), “D3 Data-Driven Docu-
ments,” IEEE Transactions on Visualization and Computer Graphics, 17,
2301–2309. []

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 307

299

302

303

303

301

https://github.com/tdhock/animint-paper/
http://members.cbio.mines-paristech.fr/thocking/animint-paper-figures/
http://orcid.org/0000-0002-4958-2844

Buja, A., McDonald, J. A., Michalak, J., and Stuetzle,W. (1991), “Interactive
Data Visualization Using Focusing and Linking,” IEEE Proceedings of
Visualization, February, 1–8. []

Cairo (2016), “Cairo: A Vector Graphics Library,” available at http://cairo
graphics.org/ []

Chang,W., andWickham, H. (2015), ggvis: Interactive Grammar of Graph-
ics, available at https://CRAN.R-project.org/package=ggvis []

Cheng, J. (2016), “Crosstalk: Inter-Widget Interactivity for HTML Wid-
gets,” available at https://CRAN.R-project.org/package=crosstalk []

Cook, D., Buja, A., and Swayne, D. F. (2007), “Interactive High-
Dimensional Data Visualization,” Journal of Computational andGraph-
ical Statistics, December, 1–23. []

Cook, D., and Swayne, D. F. (2007), Interactive and Dynamic Graphics for
Data Analysis: With R and GGobi. Use R !NewYork: Springer, available
at http://www.ggobi.org/book/ [, , ,]

Duncan, T. L., Wickham, H., and Swayne, D. (2016), “Interface Between R
and GGobi.” []

Fisherkeller, M. A., Friedman, J. H., and Tukey, J. W. (1988), “PRIM-9,
An Interactive Multidimensional Data Display and Analysis System,”
in Dynamic Graphics for Statistics, pp. 91–109. []

Hofmann, H., and Theus, M. (1998), “Selection Sequences in MANET,”
Computational Statistics, January, 1–12. []

Lawrence, M., and Lang, D. T. (2010), “RGtk2: A Graphical User Inter-
face Toolkit for R,” Journal of Statistical Software, 37, 1–52. available
at http://www.jstatsoft.org/v37/i08/ []

Lawrence, M., and Sarkar, D. (2016), “Interface Between R and Qt,” avail-
able at https://github.com/ggobi/qtbase []

Murrell, P., and Potter, S. (2015), “gridSVG: Export ‘grid’ Graphics as SVG,”
available at https://CRAN.R-project.org/package=gridSVG []

Nolan, D., and Lang, D. T. (2012), “Interactive and Animated Scalable Vec-
tor Graphics and R Data Displays,” Journal of Statistical Software, 46,
1–88. available at http://www.jstatsoft.org/v46/i01/ []

Pedersen, T. L. (2016), “tweenr: Interpolate Data for Smooth Animations,”
available at https://CRAN.R-project.org/package=tweenr []

RCore Team (2017),R:A Language and Environment for Statistical Comput-
ing, Vienna, Austria: R Foundation for Statistical Computing. available
at http://www.R-project.org/ []

Robinson, D. (2016), “gganimate: Create Easy Animations with ggplot2,”
available at http://github.com/dgrtwo/gganimate []

RStudio (2013), “Shiny: Easy Web Applications in R,” available at
http://www.rstudio.com/shiny/ [,]

Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec,
M., and Despouy, P. (2018), Plotly: Create Interactive Web Graphics via
’Plotly.js’. []

Swayne, D. F., Cook, D., and Buja, A. (1998), “XGobi: Interactive Dynamic
Data Visualization in the XWindow System,” Journal of Computational
and Graphical Statistics, 7, 113–130. []

Theus, M. (2002), “Interactive Data Visualization Using Mondrian,” Jour-
nal of Statistical Software, 7, 1–9. Available at http://www.jstatsoft.
org/v07/i11. []

Tierney, L. (1990), LISP-Stat: AnObject Oriented Environment for Statistical
Computing and Dynamic Graphics,New York:Wiley-Interscience.[]

Trifacta (2014), “Vega: A Declarative Visualization Grammar,” available at
http://trifacta.github.io/vega/ []

Unwin, A., andHofmann,H. (2009), “GUI andCommand-line - Conflict or
Synergy?” Proceedings of the St Symposium on the Interface, September,
1–11. []

Unwin, A., Hofmann, H., andHawkins, G. (1996), “Interactive Graphics for
Data Sets with Missing Values - Manet,” Journal of Computational and
Graphical Statistics, 4. []

Urbanek, S. (2011), “IPlots eXtreme: Next-Generation Interactive Graphics
Design and Implementation of Modern Interactive Graphics,” Com-
putational Statistics, 26, 381–393. available at https://doi.org/10.1007/
s00180-011-0240-x [,]

——— (2016), “rJava: Low-level R to Java Interface,” available at
https://CRAN.R-project.org/package=rJava []

Vaidyanathan, R., Xie, Y., Allaire, J. J., Cheng, J., and Russell, K. (2018),
“htmlwidgets: HTML Widgets for R,” available at https://github.com/
ramnathv/htmlwidgets []

Waddell, A., and Oldford, R. W. (2018), “loon: Interactive Statistical Data
Visualization,” available at https://CRAN.R-project.org/package=loon
[]

Wickham, H. (2010), “A Layered Grammar of Graphics,” Journal of Com-
putational and Graphical Statistics, 19, 3–28. []

Wickham, H., Cook, D., Hofmann, H., and Buja, A. (2011), “Tourr: An R
Package for Exploring Multivariate Data with Projections,” Journal of
Statistical Software, 40, 1–18. []

Wickham, H., Lawrence, M., Cook, D., Buja, A., Hofmann, H., and Swayne,
D. F. (2010), “The Plumbing of Interactive Graphics,” Computational
Statistics, April, 1–7. []

Wilkinson, L., Wills, D., Rope, D., Norton, A., and Dubbs, R. (2006), The
Grammar of Graphics, New York: Springer. []

Xie, Y. (2013), “Animation: An R Package for Creating Animations and
Demonstrating Statistical Methods,” Journal of Statistical Software, 53,
1–27. available at http://www.jstatsoft.org/v53/i01/ []

Xie, Y., Hofmann, H., Cook, D., Cheng, X., Schloerke, B., Vendettuoli, M.,
Yin, T., Wickham, H., and Lawrence, M. (2013), Interactive Statistical
Graphics Based on Qt. []

308 C. SIEVERT ET AL.

299

299

299

299

299

299
299

299

299 299

299

299299

300

300

300

301

300

301

300

301300

301

301

301

301

301

301

301

301 302 304

301

301

302

302

302

302

302

http://cairographics.org/
https://CRAN.R-project.org/package=ggvis
https://CRAN.R-project.org/package=crosstalk
http://www.ggobi.org/book/
http://www.jstatsoft.org/v37/i08/
https://github.com/ggobi/qtbase
https://CRAN.R-project.org/package=gridSVG
http://www.jstatsoft.org/v46/i01/
https://CRAN.R-project.org/package=tweenr
http://www.R-project.org/
http://github.com/dgrtwo/gganimate
http://www.rstudio.com/shiny/
http://www.jstatsoft.org/v07/i11
https://doi.org/10.1007/s00180-011-0240-x
https://CRAN.R-project.org/package=rJava
https://github.com/ramnathv/htmlwidgets
https://CRAN.R-project.org/package=loon
http://www.jstatsoft.org/v53/i01/

	Abstract
	1.Introduction
	2.Related Work
	3.Extending the Layered Grammar of Graphics
	3.1.Linking Views Via Aesthetic Mappings
	3.2.World Bank Example
	3.3.Linking and Multiple Selection
	3.4.Direct Versus Indirect Manipulation
	3.5.Animation and Smooth Transitions
	3.6.Storing and Restoring state
	3.7.Compiling and Rendering

	4.Exploring Scope with Examples
	4.1.Tornadoes in the United States
	4.2.Central American Climate Data

	5.Limitations and Future Work
	6.Conclusion
	Supplementary Materials
	Interactive Figures and Reproducible Research Statement

	Acknowledgments
	ORCID
	References

