
Fuzz Testing the Compiled Code in R Packages

Akhila Chowdary Kolla
Northern Arizona University, USA

ak2296@nau.edu

Alex Groce
Northern Arizona University, USA

Alex.Groce@nau.edu

Toby Dylan Hocking
Northern Arizona University, USA

tdhock5@gmail.com

Abstract—R packages written in the widely used Rcpp frame-
work are typically tested using expected input/output pairs that
are manually coded by package developers. These manually
written tests are validated under various CRAN checks, using
both static and dynamic analysis. Such manually written tests
allow for subtle bugs, since they do not anticipate all possible
inputs and miss important code paths. Fuzzers pass random,
unexpected, potentially invalid inputs to a function, in order to
identify bugs missed by manually written tests.
This paper presents RcppDeepState, an R package that uses

the DeepState framework to provide automatic fuzzing and
symbolic execution for R packages written using the Rcpp
framework. Using RcppDeepState, a package developer can
systematically fuzz test their Rcpp functions, without having
to manually write any inputs nor expected outputs. Randomly
generated inputs are passed to each Rcpp function, and Valgrind
is used to check for various memory access violations and
memory leaks. In our system, a test harness can be used to
fuzz test an Rcpp function using different backend fuzzers
including afl, libFuzzer, and HonggFuzz. For even more flexibility,
R package developers can write their own random generation
functions and assertions.
We implemented random generation functions for 8 of the

most common Rcpp data types, then used these functions to
fuzz test 1,185 Rcpp packages. Valgrind reported issues for more
than 2,000 functions (over nearly 500 packages) which were not
detected using standard CRAN checks on manually specified
test/example inputs. Developers confirmed for several of these
issues that the problem was reproducible and represented missing
or flawed code. These results suggest that RcppDeepState is useful
for finding subtle flaws in Rcpp packages.

Index Terms—fuzzing, R language, C++ libraries, automated
test generation, statistical software, memory errors

I. INTRODUCTION

Effective testing is important for all real-world software sys-

tems, but is especially important for software libraries, since

library code is often used by many other software systems.

Those systems are unlikely to perform their own testing of

library code they use, and any bugs in the libraries may cause

problems for client code. Because developers understand their

own code better than library code they simply make use of,

this also leads to hard-to-debug problems.

Most software testing, including for reused libraries, re-

mains rooted in manual testing. Developers of libraries write

tests that check whether, given certain concrete inputs chosen

by the developer (or a test engineer, for large enough projects)

the software produces expected outputs. Essentially, for many

libraries used in mathematics, statistics, and scientific com-

puting, the basic approach is one of specifying a fixed set of

input/output pairs.

This is basically the use of non-parameterized unit tests.

Parameterized unit tests [1] in contrast apply the ideas of

property-based testing [2], [3] to generalize a test so that inputs

are generated and then the behavior of such arbitrary inputs

is checked. A key problem in parameterized unit testing or

property-based testing is the development of a specification

that can check correctness of arbitrary inputs values. In the

case of mathematical or scientific code, where no easy method

for checking results on arbitrary values may exist, this can be

an especially difficult challenge.

However, drawing from the large body of work on fuzzing,

one important kind of software failure can be identified

without a full specification. First, users of libraries generally

expect that code will return an error code rather than crashing,

given invalid inputs. Thus, crashing on any input can often

be seen as a fault. Second, and perhaps more importantly,

illegal memory accesses and memory leaks, as well as other

kinds of undefined behavior in C and C++ programs, can be

automatically identified. Library code, no matter what input it

is given, should generally not write to memory it is not sup-

posed to write to, or depend on uninitialized memory values.

Such bugs, even if they do not immediately result in incorrect

outputs (and so might be missed by most manual testing in

practice, even if the triggering inputs were identified), can lead

to particularly devastating problems, where immediate results

of the bad call are correct, but memory has been corrupted, so

values later computed (including by code without bugs) can

be incorrect.

Memory leaks may not lead to incorrect results, but in

large-scale scientific applications, a memory leak in a library
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function can make it impossible to carry out needed work.

A. R and Rcpp

The R programming language is a free software environ-

ment for statistical computing and graphics [4]. It is widely

used among statisticians and data miners for developing

statistical software and data analysis. An R package is the

fundamental unit of shareable code in the R system [5]. An

R package may include tests that are manually written by the

package author, and which validate the functional requirements

of that package. The standard distribution mechanism for R

packages is the CRAN (Comprehensive R Archive Network).

It is a network of FTP and web servers around the world that

stores identical, up-to-date, versions of code and documenta-

tion for R packages. As of Jan 2021, there are around 10,000

R packages available through CRAN.

Although R is very easy to use it is not the fastest or most

memory efficient language. R is a garbage-collected system,

with the inefficiencies sometimes introduced in managed-

memory settings. For this reason, many widely used R libraries

are actually largely written in C++, a lower-level, faster, and

less safe language. Rcpp is a an R package that facilities

extending R with C++ [6], [7], [8]. Rcpp makes it very simple

to connect C++ to R, by providing C++ versions of all the

data types provided by R. Thousands of R packages make use

of Rcpp, including widely used packages critical to various

scientific efforts. Use of Rcpp is documented in many R

tutorials and books covering advanced usage of R [9].

Because Rcpp-based packages use the C++ language, which

allows for many memory-safety violations and undefined

behaviors in compiling code, often with subtle and hard-to-

predict results, Rcpp introduces the potential for bugs that

can cause frustration to developers in the form of hard-to-

understand crashes or, in the worst case, incorrect results in

important scientific or other applications of R. At heart, the

manual memory management that is a feature of C++ is also

the largest danger to library-developers, and, perhaps more

importantly, library users, relying on C++ to make R more

efficient.

B. DeepState

As noted above, parameterized unit testing generalizes unit

testing by allowing the generation of input values, rather than

relying on a small set of provided values. The most promising

approach to generating bug-inducing inputs to software in

recent years has been fuzzing [10]. Fuzzing is based on

the generation of randomized input data, and is, essentially,

an extension of random testing, which has been practiced

since the earliest days of software testing. Most fuzzers go

beyond pure random testing by incorporating some form of

genetic-algorithm-like feedback, where inputs that are deemed

interesting (due to, e.g., producing novel code coverage) are

mutated to find further interesting inputs.

There are many fuzzing tools, including afl [11], lib-

Fuzzer (https://llvm.org/docs/LibFuzzer.html), Eclipser [12],

and HonggFuzz (https://github.com/google/honggfuzz).

Learning to use each of these tools, and guessing which

one(s) will work best, is difficult. Moreover, fuzzers tend to

expect that software under test takes as input either a file or an

arbitrary byte stream, and provide little or (usually) no support

for testing library functions that take, e.g., multiple parameters

of varying types.

DeepState [13] is a front-end that allows tests to be written

in a format similar to the widely used Google Test unit testing

framework, but with parameterization. DeepState then allows

users to generate input data using a wide variety of fuzzers,

including afl, libFuzzer, Eclipser, and Honggfuzz. DeepState

also includes a very fast brute-force fuzzer that does not use

feedback, but has almost no overhead for input data generation.

DeepState also allows users to apply symbolic execution tools,

such as Manticore [14], again without changing their test
harness.
A test harness [15] is another name for the parameterized

unit test: code that controls the types and constraints on

input values, and the expected test results. A unit test is a

particularly simple form of test harness, and a parameterized

unit test follows a choose/assume/assert framework [15] that

is applicable to a wide variety of test generation tools.

DeepState does not automate the generation of test harness-

es/parameterized unit tests. This is left to developers, and while

DeepState provides an API to generate most base types in

C/C++, and to orchestrate choosing among code fragments to

execute, writing generators for more complex input types, such

as those provided by Rcpp, is a substantial burden on users.

Moreover, using DeepState requires users to drop out of the R

development environment they are likely most familiar with.

C. RcppDeepState

In this paper we propose a library and tool, RcppDeepState.
RcppDeepState (1) provides generators for 8 of the most

commonly used Rcpp data types, (2) automatically produces a

DeepState harness, including some automated assertions, and

(3) orchestrates using various fuzzers to generate data for the

generated harness. RcppDeepState gives R library developers

using Rcpp a push-button solution to fuzzing their code.

1) Valgrind and RcppDeepState: While library developers

can extend the RcppDeepState-generated harnesses with their

own custom assertions, it is essential to give developers

an easy way to look for the most common C++ memory

problems, which are perhaps the largest danger of using Rcpp.

Valgrind [16], [17], [18] is an instrumentation framework

for building dynamic analysis tools. There are Valgrind tools

that can automatically detect many memory management and

threading bugs. RcppDeepState lets users run their fuzzing (or

tests generated by fuzzing without Valgrind) under Valgrind,

to detect memory problems that go beyond simple crashes.

D. Contributions

We applied RcppDeepState to a large number of Rcpp

packages in the CRAN repository, and discovered a number

of potentially dangerous memory safety issues and memory

leaks. We reported these to developers, and while we await
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confirmation of many issues, we have received feedback

from multiple developers acknowledging the problems we

discovered. In addition to showing the feasibility of using

RcppDeepState (we were able to apply it to a large number

of packages without any special developer insight into those

packages), our results shed some light on the effectiveness of

various fuzzing tools and methods in the setting of R language

libraries using C++ for speed and memory efficiency.

II. RELATED WORK

We propose a new R package, RcppDeepState: an inte-

grated fuzzing tool that supports advanced automated test

generation for R packages using Rcpp to interface to C++

code. Conventionally, R packages are tested using unit tests

under unit testing frameworks, including testthat [19], RUnit

[20], tinytest [21], and unitizer [22]. In these frameworks, test

cases and expectations are written using R code. Assertions or

expectations must be manually written, and are often basically

input/output pairings.

The CRAN repository also performs automatic additional

analysis of code, running included tests under compiler san-

itizers (e.g., clang/LLVM’s ASAN) and even under Valgrind.

When R packages are deployed to the CRAN repository,

CRAN performs these and other checks using the manual test

included.

Fuzzr [23] is another R package that fuzz tests R functions

by passing in a wide array of pre-defined inputs. It does not

really offer full-featured automated test generation for R code.

DeepState, and thus RcppDeepState, are inspired by the

property-based testing paradigm. Property-based tools, follow-

ing on QuickCheck [2], including PropEr [24], Hypothesis [3],

and ScalaCheck [25], are usually based on some form of ran-

dom data generation, without symbolic execution or feedback-

based fuzzing. Other tools, drawing on a JUnit paradigm, but

providing property-based testing, include Pex/IntelliTest [26]

and UDITA [27].

III. IMPLEMENTATION AND ARCHITECTURE OF

RCPPDEEPSTATE

A. The Test Harness

The most important functionality provided by RcppDeep-

State is the generation of a DeepState harness for testing

a function. Fuzzing itself and other aspects of testing are

provided via DeepState.

In order to explain what RcppDeepState provides, we will

show a simple test harness generated using the tool (Figure 1).

The code begins with three includes that use C++ libraries

essential to RcppDeepstate; only one of these is the RcppDeep-

State library itself. To integrate an external C++ file with an

Rcpp application package, RcppDeepstate uses RInside [28].

To use RInside in any program first we need to create an

instance of the RInside class, which represents an embedded

R interpreter for a C/C++ program. The RInside package is

designed to make it easier to embed R in a C++ class. Second,

the RcppDeepState library itself provides data generators

for commonly used R/Rcpp types. Finally, we include the

# inc lude <RIn s i d e . h>
# inc lude <RcppDeepSta te . h>
# inc lude <DeepS t a t e . hpp>
I n t e g e rV e c t o r MergeSor t ( I n t e g e rV e c t o r x ,

I n t e g e rV e c t o r y ) ;
TEST( v e c t o r s o r t , merge ) {

RIn s i d e R ;
x = RcppDeepS t a t e I n t e g e rVec t o r ( ) ;
y = RcppDeepS t a t e I n t e g e rVec t o r ( ) ;
t ry {

MergeSor t ( x , y ) ;
} catch ( Rcpp : : e x c e p t i o n& e ) {

cou t << ” Excep t i on Handled ” << end l ;
}

}

Fig. 1. An Example RcppDeepState-Generated Test Harness

DeepState library, which allows access to the DeepState core

API and turns the code into a test harness by automatically

adding either a main or a libFuzzer entry point, depending

on context.

The developer does not have to produce this code; instead

the developer specifies that the function to be tested is Merge-

Sort, which takes as input two integer vectors. RcppDeepState

does the hard work, including adding an exception handler so

that normal Rcpp exceptions do not cause test failure.

B. RcppDeepState Provided Datatypes

We performed an analysis of the frequency of the datatypes

used in Rcpp functions in the R packages on CRAN, in order

to determine the most important generators for RcppDeepState

to implement. Table I shows the frequencies of types in

functions and packages.

Although SEXP and Rcpp::List are very frequently

used datatypes, no random generation functions were

implemented for these types because they are extremely

dynamic and the generation of useful values for these inputs

is library dependent; without further context, fuzzing these

types would generate a large number of false positives. In

contrast, Rcpp::XPtr<XPtrTorchTensor>, also highly

dynamic, is present only in 1 package and 371 functions,

so cannot be seen as a high priority for implementation.

We implemented DeepState generators for the other most

frequently used datatypes (Rcpp::NumericVector,
Rcpp::NumericMatrix, arma::mat,
std::string, Rcpp::CharacterVector, and

Rcpp::IntegerVector). Although DeepState has

built-in generators for int and double we needed to

typecast them from raw byte-based C types to R/Rcpp types.

Implementing generators for these 8 types allowed us to

fuzz 6,860 functions over 1,185 packages. RcppDeepState

generates fuzzer specific inputs only for the 8 most frequently

occurring data types used in Rcpp functions in R packages.

These most frequently occurring data types contribute 70%

of the total tested methods from the packages on CRAN. The

remaining 30% of the methods have at least one argument

whose data type is not frequent or is highly dynamic (SEXP,
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Rcpp::List, etc.). When testing thousands of methods the

probability of missing the methods with the least common

data types is acceptable, considering the amount of work that

we need to put into generating useful defaults for those data

types.

TABLE I
DATATYPE FREQUENCIES

Data type # Functions # Packages
SEXP* 455 90
Rcpp::NumericVector 393 174
Rcpp::XPtr<XPtrTorchTensor>* 371 1
Rcpp::NumericMatrix 291 146
arma::mat 286 127
Rcpp::List* 269 86
std::string 216 84
int 123 73
Rcpp::CharacterVector 121 54
Rcpp::IntegerVector 99 43
double 89 50

C. RcppDeepState Architecture

Fig. 2. RcppTestPackage Workflow When Tested Using RcppDeepState.

An Rcpp package has a structure based on a stan-

dard set of folders, namely R (containing the critical file

RcppExports.R), man, src, and, most importantly for our

purposes, standardized description and namespace files. Rcp-

pDeepState operates on this standard organization scheme as

follows:

• First, src\RcppExports.cpp is parsed and a harness

is generated for each exported function call; these are the

functions visible to users of the library, so they are the

functions we need to fuzz. A harness is based on a generic

template, e.g.,

Rcpp: : fun1(datatype1, datatype2)

The compiled test harness, e.g.,

fun1 DeepState TestHarness.o

, is linked against the TestPackage’s dynamic library

(TestPackage.so), producing a fuzzable executable.

• DeepState is used to perform fuzzing, and the output files

for specific fuzzers are processed to bucket results into

.pass, .fail, and .crash files. These can also be

replayed as regression tests, or as a corpus for future

fuzzing.

• Valgrind is used to further analyze passing runs for

memory use problems that do not cause a crash or

property violation.

Figure 2 shows the basic flow, including the underlying

RcppDeepState functions called, for testing a hypothetical

RcppTestPackage using RcppDeepState, including generation

of Valgrind traces for presentation to the user (discussed next).

D. Valgrind Analysis

Valgrind memcheck can detect the use of uninitialized

memory, reading/writing memory after it has been free’d (use-

after-free), reading/writing off the end of malloc’d blocks,

reading/writing inappropriate areas on the stack, and memory

leaks (where pointers to malloc’d blocks are lost forever

or there is mismatched use of malloc/new/new [] vs.

free/delete/delete []).
We run Valgrind not during fuzzing itself, which imposes

too high an overhead for many fuzzers, but on the corpus

of interesting tests generated by each fuzzer, in particular the

.pass files (there is little point in using Valgrind on already-

failing tests).

IV. RCPPDEEPSTATE OVERVIEW

The Figure 2 depicts the stages that include in testing an

Rcpp package using RcppDeepState.

1) Parse & Extract: Once the user has the source code

for the Rcpp test package available in his local machine

that is either downloaded from the CRAN repository or

developed by the user we need to parse the data that is

present in the src folder’s RcppExports.cpp file. This file

contains all the available Rcpp functions defined by the

user along with the list of arguments and their datatypes.

2) Type-Match Extraction: RcppDeepState defines a test
harness only for those functions that only take arguments

from the specified 8 datatypes. After parsing the Rcpp-

Exports.cpp file we match those captured data types and

generate the test harness.

3) Primary Fuzz Run: The system automatically generates

the test harnesses for each function in the package in the

function folder in the inst/testfiles path. This test harness

is stored in the function folder along with the required

makefiles. The system then compiles and runs the test

harness and stores the fuzzer generated inputs in the

outputs folder.

4) Secondary Fuzz Analysis: In this step we analyze the

previously generated outputs from the fuzzers. This anal-

ysis runs the test harness executable using the memory

debugging tool Valgrind.
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5) Result Analysis: The Valgrind run stores the obtained

results in an XML format and we parse the XML data

and generate a user-readable data frame with details

including the error kind, error message, and the trace

showing the line number and the file name making it

easier for the user to rectify the error based on the details

provided.

A. RcppDeepState Tool Demo:

In this section we will look at testing of an Rcpp function

mi from the BNSL package. Consider the following function

BNSL::mi where the NumericVectors x and y and int proc are

the parameters for the function:

/ / [ [ Rcpp : : e x p o r t ] ]
double mi ( Numer icVec tor x , Numer icVec tor y ,

i n t proc =0){
i f ( p roc ==0) re turn ( J e f f r e y s m i ( x , y , 0 , 0 ) ) ;
e l s e i f ( p roc ==1) re turn (MDL mi( x , y , 0 , 0 ) ) ;
e l s e i f ( p roc ==2) re turn ( BDeu mi ( x , y , 0 , 0 , 1 ) ) ;
e l s e i f ( p roc ==3) re turn ( emp i r i c a l m i ( x , y ) ) ;
e l s e i f ( p roc ==9) re turn ( emp i r i c a l m i ( x , y ) ) ;
e l s e i f ( p roc ==10) re turn ( con t mi ( x , y ) ) ;
e l s e re turn ( J e f f r e y s m i ( x , y , 0 , 0 ) ) ;

}

The inserted code includes a proc estimation that is based

on Jeffrey’s prior, the MDL, BDeu, cont, and empirical prin-

ciple. If the argument proc is missing, proc=0 (Jeffreys’) is

assumed. All Rcpp packages have documentation written by

the developer which provides a short overview of the functions

and exposes the semantics of the function by providing valid

input examples.

mi> n=100
mi> x=rbinom ( n , 1 , 0 . 5 ) ; y=rbinom ( n , 1 , 0 . 5 ) ; mi ( x , y )
[ 1 ] 0
mi> z=rbinom ( n , 1 , 0 . 1 ) ; y =( x+z ) ; mi ( x , y ) ;
[ 1 ] 0 .5204089
mi> x=rnorm ( n ) ; y=rnorm ( n ) ; mi ( x , y , proc =10)
[ 1 ] 0
mi> x=rnorm ( n ) ; z=rnorm ( n ) ; y =0 .9 *x+ sqr t ( 1 −0 . 9 ˆ 2 ) *z ;

mi ( x , y , proc =10)
[ 1 ] 0 .4281646
>

However, these (trivial) examples/tests don’t explore all the

possible paths of the function. In this case, the inputs only

explore the 2 paths where the proc value is 0 or 10.

> r e s <− d e e p s t a t e read v a l g r i n d xml ( ”mi example .R” )
> r e s
Empty data . t a b l e (0 rows and 5 c o l s ) : e r r . k ind ,

message , f i l e . l i n e , a d d r e s s . msg , a d d r e s s . t r a c e

When we run the predefined examples/tests for the mi

function under Valgrind we don’t see any errors. Testing the

code on these predefined inputs is inadequate for claiming

code is likely bug free. We need to explore all the possible

paths that increase the code coverage by passing randomized

or unexpected inputs to the function. To do that we need to

test the function under RcppDeepState as follows:

> pkg . path <− ” / home / u s e r /BNSL”
> fun <− ”mi”

> RcppDeepSta te : : d e e p s t a t e f u z z fun ( pkg . path , fun ,
t ime . l i m i t . s e conds =3)

[ 1 ] ”mi”

The deepstate fuzz fun() call results in test harness gener-

ation for the provided Rcpp function, followed by running the

test harness for the provided Rcpp function. It also generates

.crash, .fail, .pass extension files depending upon the type of

response obtained by running the inputs on the executable.

The next step includes analyzing those generated inputs

under Valgrind looking for the bugs/errors.

> path <− ” / home / u s e r /BNSL / i n s t / t e s t f i l e s /mi”
> seed a n a l y z e <− d e e p s t a t e f u z z fun an a l y z e ( path ,

t ime . l i m i t . s e conds =10)
r unn i ng t h e e x e c u t a b l e . .

The deepstate fuzz fun analyze() returns a data table with

the inputs and the error messages and the position where the

error occurred.

> s t r ( s eed a n a l y z e $ l o g t a b l e )
L i s t o f 1
$ : C l a s s e s data . t a b l e and data . frame : 1 obs . o f 5

v a r i a b l e s :
. . $ e r r . k ind : ch r ” I n v a l i dRe ad ”
. . $ message : ch r ” I n v a l i d r e ad of s i z e 8”
. . $ f i l e . l i n e : ch r ”mi cmi . cpp :55 ”
. . $ a d d r e s s . msg : ch r ” Address 0x9d66358 i s 0

b y t e s a f t e r a b l ock of s i z e 184 a l l o c ’ d”
. . $ a d d r e s s . t r a c e : c h r NA
. . − a t t r ( * , ” . i n t e r n a l . s e l f r e f ” )=<e x t e r n a l p t r>

The output shows there was an issue in file mi cmi.cpp

at line 55. If we trace back to that function line the code

combines vector x and y to produce a new table c xy. If the

size of vectors x and y are not equal the system generates

an issue because we are trying a create a combined table

for two unequal vectors, which causes an invalid read. The

fuzzer specific datatypes produce unequal vectors exposing the

invalid read which was not identified running the predefined

inputs. Therefore we need to specify a condition to check if

the sizes of the vectors x and y are equal.

V. RESULTS AND COMPARISON OF FUZZERS

We applied RcppDeepState, using only the default settings

of the tool and the provided RcppExports.R files to fuzz

a large set of CRAN packages using Rcpp. We restricted our

analysis to functions where all inputs were a type supported

by the RcppDeepState generators.

Our purpose was twofold: first to demonstrate that even

in the absence of additional specification of correctness by

developers, RcppDeepState could find memory safety prob-

lems and memory leaks. Second, we wanted to compare a few

different fuzzers, to see if there was an obvious difference in

performance between fuzzers.

A. Low Budget Random Testing

In real-world fuzzing campaigns against security interfaces

or compilers, it is often important to fuzz a system for hours

or, often, days [?]. This is inconvenient for using fuzzing in a
property-based testing context, or during normal development
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of an R package. Many property-based testing tools set a

default timeout of only one minute [29], and this is a short

enough budget that developers can easily perform fuzzing after

every change to their code. However, feedback-based fuzzers

generally require some startup time simply to calibrate which

inputs to focus on, so one minute is somewhat unrealistic.

Because R developers are unlikely to be experienced in

fuzzing, and are more likely to use a tool that provides results

even without a substantial investment of time or attention, we

therefore performed our experiments using a twenty minute

fuzzing budget for each fuzzer. This is a compromise between

the very short testing budgets typical of property-based testing

tools and the multi-hour runs typical of security-oriented

fuzzing campaigns.

B. Fuzzers Compared

We wanted to compare fuzzing using tools likely to be

available to all DeepState users on any unix-like platform, and

tools widely perceived as easy to install and useful. The most

well known fuzzers are afl [11] and libFuzzer, the function-

based fuzzer included with recent versions of LLVM/clang.

We additionally used DeepState’s built-in brute-force fuzzer,

which lacks coverage-driven feedback and mutation of inputs,

but has extremely high throughput for test generation. We

hypothesized that even brute-force fuzzing would work well

for developers looking for memory safety issues in Rcpp-

based packages. Because afl, unlike libFuzzer and DeepState’s

fuzzer, requires an initial seed corpus, we used the example

values that are included in every R package with each function

as initial seeds for afl in one run, in addition to the default

null file corpus provided by DeepState. All experiments were

performed on an Intel Xeon(E)E-2136 CPU 3.30Ghz, with

32GB of RAM, using a single core (the fuzzers are all

essentially single-threaded so multiple cores are only useful

for running multiple fuzzer instances).

C. Experimental Results

We downloaded 2,077 Rcpp packages from CRAN. Of

these, only 1,185 packages could be analyzed, due to our

limited set of generators, or the absence of an RcppExport
s file. We fuzzed 6,860 functions. Of these, 965 produced at

least one Valgrind warning. Table II shows overall data on our

experiments.

TABLE II
SUMMARY OF RESULTS

Type # Packages # Functions
Total Rcpp Packages 2149 19735

No RcppExports 247 NA
At least one unfuzzable type 717 12,875

Executed under RcppDeepState 1,185 6,860

afl (no corpus) 5 8
afl (corpus) 27 59
libFuzzer 73 117
DeepState Fuzzer 478 911

The last three rows are the core result. This shows, for each

fuzzer used, the number of packages/functions for which at

least one problem (crash or Valgrind issue) was found. All of

the fuzzers were useful, and as we later show, they identified

different problems in different packages and functions. How-

ever, in terms of raw numbers, afl performed poorly using the

null corpus, and much better when seeded with the data in the

R package test/example directories. However, libFuzzer

performed better overall than afl, even with a better corpus

than libFuzzer. Finally, the brute force DeepState fuzzer, while

probably less capable of finding complex, deep, bugs requiring

discovery of deep code paths, was extremely effective for

finding corner-case inputs for these functions. In a sense, the

DeepState fuzzer is simply the original Miller et al. [?] fuzzing
proposal, adapted to type-correct function input generation. We

speculate that R code vulnerabilities may have shallow paths

amenable to fast brute-force approaches, and not requiring

large fuzzing budgets or advanced feedback, unlike more

typical fuzzing targets, e.g., media parsers or web browsers.

The last row shows the number of Valgrind warnings produced

for the test code included with each package. None of the

inputs provided as examples resulted in exposing any of the

memory-safety problems.

Most of the problems we identified were Valgrind errors;

afl did not identify any crashing inputs, and the brute force

fuzzer identified 478 only when run under Valgrind; libFuzzer

identified 378 crashes using address sanitizer in place of

Valgrind, however.

TABLE III
VALGRIND ERROR COUNT

Error Type DeepState afl libFuzzer
Invalid read 405 11 20
Invalid write 97 13 53
Use of uninitialized values 6 7 1
Conditional jump or move(s) 113 7 3
Argument size 16 0 0
Possibly lost data 274 34 16

Table III shows detailed data on the types of Valgrind

warnings/errors, for one package. A more detailed explanation

of these error categories makes it easier to understand these

results:

• Invalid read: there was an attempt to read from an invalid

memory address.

• Invalid write: there was an attempt to write to an invalid

memory address.

• Use of uninitialised values: there was a read from an

uninitialized value in memory.

• Conditional jump or move(s): a branch depends on unini-

tialized data.

• Argument size: an incorrect value was passed to a system

call, e.g., malloc(-1)
• Possibly lost data: there is a potential memory leak, where

allocated memory was not deallocated.

While the memory leaks may be harmless in some cases
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(Valgrind’s detection of memory leaks can be less precise

than other errors) most of the other problems indicate at

least a potential for serious problems, including reliance of

function values on the compiler version and previous contents

of memory, or potential corruption of memory.

Figures 3 and 4 show Venn diagrams of the overlap in results

between the fuzzers. Note that while the DeepState brute force

fuzzer was the most successful, there were a large number of

functions or packages where problems were only identified

by afl and/or libFuzzer, as well. It is good to make use of all

three fuzzers, which is easy to do with RcppDeepState. It is

likely other fuzzers would find other problems. We did not run

Eclipser, for example, which is good at finding many problems

other fuzzers do not, because its approach really needs a larger

time budget than twenty minutes. For final checks before

submitting a package to CRAN, use of all fuzzers supported,

for longer timeouts (at least an hour) would be a sound

development practice. Scientific or economically important

results can depend on R packages, so for final production

versions, more substantial testing is in order. RcppDeepState

makes that easy.

Fig. 3. A Venn diagram for the Universe(U) of 1,185 test packages,
representing the count of packages that have issues identified by each of
the fuzzers.

Fig. 4. A Venn diagram for the Universe(U) of 6,860 functions, representing
the count of functions that have issues identified by each of the fuzzers.

Surprisingly, the difference in fuzzer performance is not

obviously attributable to throughput differences. As Table IV

shows, while the DeepState fuzzer was faster than other

fuzzers, the difference was not large, due to the fact that

RcppDeepState writes all tests to disk in order to allow offline

Valgrind analysis. The need to write outputs accounts for the

fact that libFuzzer, which is normally much faster than afl, was

actually somewhat slower in our experiments: the advantages

of function-call fuzzing are reduced in our setting. If users add

custom properties and/or are only interested in actual crashes,

throughput for libFuzzer and the DeepState fuzzer could be

made much higher, and that of afl somewhat higher, by turning

off the writing of non-failing inputs to disk.

TABLE IV
INPUTS GENERATED PER MINUTE

Fuzzer Mean Median Standard deviation
afl 86 77 4.94
libFuzzer 79 63 5.15
DeepState 97 81 7.15

We contacted developers with the results of our analysis, and

five developers (so far) responded to us, confirming our results.

In some cases, the response suggested that the library expects

users to provide valid inputs, and our fuzzing results did not

satisfy such preconditions. However, given the potential harm

from memory corruption if users make a mistake in calling a

package function, it would be best for such checks to be added

to the package code, since most seem to be simple, cheap

checks (e.g., two vectors must match in size). Our harness

will not report a problem if a function detects invalid inputs

and gracefully raises an exception, alerting a user that the

input is invalid. And, in fact, three of the developers in their

initial response explicitly noted that we had identified missing

important checks on data validity, that should be added to the

library code.

VI. DISCUSSION:

In this section we discuss our reasoning for the decisions we

made that might call into question the validity of our approach.

A. Threshold Running Time:

The selected approach of running the test harnesses for

a threshold time limit of 20 minutes for each fuzzer comes

with an overhead. Running the fuzzers along with valgrind for

more than the chosen time limit incurs significant performance

issues. R uses a large amount of memory and generates large

vectors and matrices. Fuzzers are incredibly fast; they generate

thousands of inputs in a short span, but the issue occurs when

we are trying to serialize those inputs to R level inputs. The

longer we run the fuzzers the larger the data that needs to be

translated, and the larger the size of vectors to be allocated in

R. On average the fuzzer generated inputs when run for more

than the chosen threshold resulted in inputs of size 1.3GB

which exceed the size of the vectors that could be allocated.

For 61% of the packages the issues were identified under

20m in Table II. The budgets are in some ways arbitrary, and

insufficient for an evaluation of the various fuzzers. However,

we chose budgets that were clearly in scope for practical
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use during development by Rcpp developers. Shorter runs

might find too little, but longer runs would discourage some

developers.

B. Exported vs Non-Exported Functions:

There are situations where the corner cases can trigger

a bug inside a method exposed by Rcpp, but the method

itself is effectively guarded by R code. There might be no

practical case for testing those functions as these functions

are not directly exposed to the end-users. Hence, we have

focused our analysis in the paper on the subset of Rcpp

functions that are directly callable from R, for which users can

provide arbitrary inputs. Although our analysis deals with fuzz

testing both exported and unexported functions (as designated

by the R package’s NAMESPACE API), the main focus of

RcppDeepState is to handle issues that come from exported

functions; mostly no run-time checks are performed by the

package developers on the inputs provided to these functions.

RcppDeepState found issues in 156 exported, visible func-

tions from 74 packages (out of 243 exported functions tested).

These are clearly relevant problems because users call those

Rcpp functions directly, and there is no opportunity for R-level

code to protect users from providing bad inputs.

VII. CONCLUSIONS AND FUTURE WORK

R is a widely used (estimates of the number of users range

from 250K to over 2 million, and there are over 200K repos-

itories using the R language on GitHub) statistical analysis

language. R code drives important scientific and commercial

data analysis projects. R packages written in C++, using the

popular Rcpp framework allow R users to take advantage of

the speed and lower-level memory management provided by

C++ code. In some cases, this is essential for handling large

data sets efficiently. However, using manual memory manage-

ment rather than R’s managed garbage collection exposes users

to subtle memory safety flaws, and the possibility of memory

leaks.

Rcpp-based packages are usually tested using a handful of

manually devised input values. Although these tests are run

under tools such as Valgrind that can expose memory safety

issues, the fact that, as with most manual unit tests, the input

values are ones the developer has obviously thought about

when writing the code mean that in practice such tests seldom

expose subtle problems.

We present RcppDeepState, a tool that automatically gen-

erates a test harness given a standard Rcpp-using R package,

based on the function export information. RcppDeepState uses

the DeepState testing front-end to provide push-button fuzzing,

using powerful modern fuzzing tools, for developers of Rcpp-

based R packages. RcppDeepState provides generators for the

most commonly used Rcpp data types that are amenable to

automated fuzzing. Using RcppDeepState, we analyzed 1,185

Rcpp-based packages and 6,860 functions in those packages.

Our efforts exposed a large number of potential memory

vulnerabilities.

As future work, we would like to mine R code, including

example code included in packages, to determine implicit con-

straints on input values, in order to avoid some false positives

(or at least mark them as likely involving invalid inputs). Such

implicit type inference would also make it possible to effec-

tively support widely used, but hard-to-generate, R types such

as SEXP and List. We would also like to add further tools

for developers to write their own custom properties to check,

including algorithmic complexity checks. RcppDeepState is

available at https://github.com/akhikolla/RcppDeepState.
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