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ABSTRACT

In many real-world applications of machine learning, we are interested to know if it is possible to train on the data that

we have gathered so far, and obtain accurate predictions on a new test data subset that is qualitatively different in some

respect (time period, geographic region, etc.). Another question is whether data subsets are similar enough so that it is ben-
eficial to combine subsets during model training. We propose SOAK, Same/Other/All K-fold cross-validation, a new method
which can be used to answer both questions. SOAK systematically compares models which are trained on different sub-

sets of data, and then used for prediction on a fixed test subset, to estimate the similarity of learnable/predictable patterns

in data subsets. We show results of using SOAK on six new real data sets (with geographic/temporal subsets, to check if
predictions are accurate on new subsets), 3 image pair data sets (subsets are different image types, to check that we get
smaller prediction error on similar images), and 11 benchmark data sets with predefined train/test splits (to check similarity of

predefined splits).

1 | Introduction

A fundamental assumption in supervised learning is similarity
between the train data (input to the learning algorithm) and
test data (used to evaluate prediction accuracy of the learned
model). This assumption is known as “independent and identi-
cally distributed” (i.i.d.) in statistics [1]. Although special modi-
fications to supervised learning algorithms can guarantee accu-
rate predictions in other scenarios such as covariate shift [2],
this paper focuses on standard supervised learning algorithms,
designed for i.i.d. data. Real-world applications of such super-
vised learning algorithms often involve training/predicting on
data subsets which are qualitatively different in some respect
(time period, geographic region, data source, etc.). The main con-
tribution of this paper is a new method that allows us to quantify

if these data subsets are similar enough for accurate learning and
prediction.

Motivation for comparing models trained on Same/Other/All sub-
set(s) as test subset. For example, in image segmentation, subsets
are regions of the image. We would like to train on several labeled
regions and predict accurately on a new region. In this paper, we
use the name Other for this model because it is trained on other
subsets of data (relative to the new/test region, see Figure 1). We
would like to quantitatively determine if those Other data sub-
sets are useful for training a model for accurate prediction on
the new subset relative to a baseline Same model trained using
labeled data from the new subset. Ideally, these Other model pre-
dictions on a new subset would be just as accurate as “Same”
model predictions (if learnable/predictable patterns are similar
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FIGURE1 | SOAK (Same/Other/All K-fold CV) requires adding subset/fold columns to the data (upper left). For one iteration of SOAK train/test
splits (black box, lower right), current test subset = B, so Same = B/Other = A/All = A + B are the values of subset which are used to define the train set,
in combination with the current fold = 3, so test sets shown have subset = B and fold = 3, Same train set has subset =B and fold € {1, 2}, and so forth.

in data subsets) or even more accurate (if the Other model has
access to more training data than the Same model).

Another real-world example is in learning factors for predicting
childhood autism, for which we propose a benchmark with two
subsets, one for each year of survey data (2019 and 2020). We
would like to know if it is beneficial to train using All data sub-
sets (Figure 1), because if the subsets are similar enough, then
we expect that the larger data set allows the learning algorithm
to detect more subtle factors associated with autism (that were
not possible to detect by training on any year/subset alone). Con-
versely, if subsets are very different, then we expect that train-
ing on All subsets is detrimental to prediction accuracy (rela-
tive to training using the Same subset as the test subset). Ide-
ally, these All model predictions on any given subset would be
more accurate than Same model predictions (if patterns in sub-
sets are similar, and each subset is too small when used by itself
for training).

Contributions and novelty. In this paper, we propose a new
algorithm, Same/Other/All K-fold cross-validation (SOAK),
which can be used to compare prediction accuracy of models
trained on different data subsets. SOAK is a generalization of
standard K-fold cross-validation, which corresponds to the spe-
cial case of SOAK with only one subset, so only the “Same”
subset as test is used for training. Although single train/test
splits are commonly used for quantifying prediction error on
a new subset of data (the “Other” model), this method is lim-
ited because it only yields a single measurement of prediction
error. Our proposed SOAK algorithm is novel because it com-
bines the idea of K-fold cross-validation with the idea of train-
ing/predicting on qualitatively different data subsets. SOAK can
therefore be used with rigorous statistical tests of significance
(e.g., T-test of prediction error rate between models trained on
Same/Other), which are not possible to use with single train/test
splits. There was no existing free software implementation of the
proposed SOAK algorithm, so we provide one in the mlr3 frame-
work: https://github.com/tdhock/mlr3resampling. After review-
ing related work in Section 2, we describe the SOAK algorithm

in Section 3 and details of 20 data sets (Table 1). In Section 4,
we show results of using SOAK to estimate similarity/differences
between subsets in 6 new real data sets (subsets are geo-
graphic/temporal), 11 benchmark data sets with predefined train
and test subsets (which are treated as two SOAK subsets), and 3
image data sets (each has two subsets, MNIST and either EMNIST
or FashionMNIST).

2 | Related Work

Cross-validation is a standard method in machine learning, that
is widely used, and discussed in several textbooks [1, 3-5]. The
first use of cross-validation was in the context of regularized lin-
ear models Larson [6], with the term “cross-validitory” appear-
ing later [7], along with the idea of averaging several empir-
ical estimators [8]. To clearly discuss the different data sets
involved in cross-validation, we use the terms full, train, test, sub-
train, and validation [9]. The full data set is split into train/test
sets (for evaluation), and then the train set is further split into
subtrain/validation sets (for hyper-parameter learning). K-fold
cross-validation can be used for either type of split, and involves
partitioning the data into K disjoint test (or validation) sets; for
each, the train (or subtrain) set is defined as all the other data.
A primary use of cross-validation is model selection (splitting the
train set into subtrain/validation sets), to avoid overfitting during
a learning algorithm [10, 11]. In contrast, our proposed method
is primarily useful for splitting the full data set into train/test
sets [12], in order to quantify the prediction error/accuracy on
new/test data that were never seen during learning. Standard
K-fold cross-validation can be used for that purpose, and yields
K measurements of test error/accuracy that can be useful for
comparing the prediction accuracy of different algorithms. An
alternative is to use a single train/test split, with one subset for
train, and another for test; while this approach is somewhat com-
mon in the machine learning literature, it only yields one test
error/accuracy number, so it can be a misleading estimate of pre-
diction error/accuracy, that tends to encourage overfitting [4, 13].
In contrast, our proposed SOAK method is based on K-fold CV,
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TABLE1 | Meta-data, one row per data set that we analyzed using the proposed SOAK algorithm.

Subset type Data Rows Features Classes Class imb. Subsets Subset imb.
1 ImagePair IPair_E 140,000 10 1.1 2 1.0
2 ImagePair IPair_E_rot 140,000 10 1.1 2 1.0
3 ImagePair IPair_Fashion 140,000 10 1.1 2 1.0
4 time/space CanadaFiresA 4827 2 2.0 4 7.0
5 time/space CanadaFiresD 1491 2 1.5 4 1.6
6 time/space FishSonar_river 2,815,744 2 3.2 4 1.2
7 time/space NSCH_autism 46,010 2 31.8 2 1.5
8 time/space aztrees3 5956 2 7.8 3 2.0
9 time/space aztrees4 5956 2 7.8 4 4.9
10 train/test CIFAR10 60,000 3072 10 1.0 2 5.0
11 train/test EMNIST 70,000 10 1.0 2 6.0
12 train/test FashionMNIST 70,000 10 1.0 2 6.0
13 train/test KMNIST 70,000 10 1.0 2 6.0
14 train/test MNIST 70,000 10 1.2 2 6.0
15 train/test QMNIST 120,000 10 1.2 2 1.0
16 train/test STL10 13,000 27,648 10 1.0 2 1.6
17 train/test spam 4601 2 1.5 2 2.0
18 train/test vowel 990 11 1.0 2 1.1
19 train/test waveform 800 3 1.1 2 1.7
20 train/test zipUSPS 9298 10 2.2 2 3.6

Note: Imb. = Imbalance ratio between largest/smallest class or subset (1 =balanced, larger = more imbalance).

so yields K test error/accuracy numbers, and can be used with
statistical tests of significance.

Distributional Homogeneity. The cross-validation method that
we propose is related to the statistical concepts of indepen-
dent and identically distributed (i.i.d.) random variables, and of
homogeneity in meta-analyses, meaning that different subsets
of the data follow the same distribution. Homogeneity/i.i.d. is
a stronger condition than we are interested in measuring using
our proposed cross-validation procedure (it may be beneficial to
combine subsets when learning, even though they are heteroge-
neous). Classic examples of statistical tests for homogeneity are
the Chi-Square test of Pearson [14] and the Q test of Cochran
[15]. In meta-analysis, the goal is to provide a better estimate of
a quantity measured in several different studies, and there are
several methods available for estimating heterogeneity [16]. The
ReDistribution test of homogeneity has been used for climate
time series data [17], and is related to the study of change-point
detection algorithms [18].

Fairness/bias. Our proposed SOAK method has an obvious
application to determining if a trained model is fair or biased
across demographic categories such as race, gender, or age (which
could be used as SOAK subsets). However, most papers about
algorithmic bias do not mention cross-validation explicitly. For
example, West [19] examined how gender discrimination in Al
workplaces has influenced AI systems’ failures to see and hear
women, and proposed that it may not be desirable to make Al
systems “work better” for minorities. The author questions the
definition of “algorithmic fairness” as a computational problem,

which can be identified and mitigated, yielding prediction accu-
racy rates that are similar across demographic categories. There
are many algorithms which can be used for predicting sex or
gender [20]. Wilming et al. [21] proposed the GECO data set
along with a framework for evaluating gender bias in explana-
tions, in the context of large language models. Hall et al. [22] pro-
posed the VisoGender data set for benchmarking gender bias in
image-text pronoun resolution (690 images with paired captions,
balanced gender characteristics). Currey et al. [23] proposed the
MT-GenEval data set for evaluating gender bias in machine trans-
lation. Examples are counterfactual sentences, with subsets for
Profession (Male, Female, Neutral), and for Person Gender (Male
or Female). Other machine translation data for benchmarking
gender bias include WinoMT [24], MuST-SHE [25] and others
[26]. Existing software includes FairLearn [27, 28], which imple-
ments a reductions approach that is different from our proposed
approach of comparing test error rates of Same and Other models.

Domain adaptation and transfer learning. Domain adaptation
is the idea that the learning algorithm should adapt based
on some known difference between the train and test sets. In
this literature, SOAK subsets are known as “domains.” Domain
adaptation can be considered a special case of transfer learn-
ing (i.e., inductive transfer learning), where the data distribu-
tions are not the same, but the prediction task is the same,
between the source/train and target/test subsets. A review of
domain adaptation methods for machine translation refers to the
Other model as “out-of-domain” prediction [29]. Farahani et al.
[30] refer to the Other model as “unsupervised domain adapta-
tion” because there are no labels available in the target domain.
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Judge et al. [31] performed computational experiments using the
Other model, but did compare with error rates from the Same
model. In computer vision, domain adaptation has been called
“out-of-distribution” prediction; Madan et al. [32] found that con-
volutional neural networks were able to do this to some extent (on
new position/rotation/scale values), by increasing training data
diversity. In that context, the SOAK Same model is referred to as
“in-distribution” training, whereas the Other model is referred to
as “out-of-distribution” (OOD) training. Spatial cross-validation
is used in geographical data analysis [33], and can be viewed
as the “Other” model in SOAK. Whereas these previous stud-
ies focus on the Other model (without necessarily comparing
with the Same model), our proposed SOAK algorithm addition-
ally trains the All model, and emphasizes a comparison with the
Same model (using rigorous tests of statistical significance).

Novelty with respect to available software. A primary contribution
of our paper is a free/open-source software framework which
makes it easy to run SOAK with different data sets and learning
algorithms. Although the Same/Other comparison is sometimes
used in domain adaptation and computer vision research [29, 30,
32], there was no corresponding free software framework until
our work on SOAK. There are many free/open-source implemen-
tations of cross-validation, including origami [34], splitTools [35],
and mlr3 [36] in R, as well as scikit-learn in python [37]. All
of these packages support standard K-fold cross-validation, and
some support stratification and keeping groups of observations
together when splitting (a concept/parameter called “group”).
The proposed SOAK algorithm is based on the concept of data
subsets, which was not previously supported in any free software
machine learning framework, so we implemented it in the mlr3
framework [38] because it provides flexible support for paral-
lelization over data sets, algorithms, and train/test splits (includ-
ing parallelization over the proposed subsets).

Proposed subset concept is distinct from previous group concept.
The “group” concept (observations/rows in the same group must
be assigned the same fold ID) is present in both mlr3 and
in scikit-learn, and the “group” concept is different from the
SOAK “subset” concept (one subset is designated as test, and
Same/Other/All subsets are designated as train), but actually the
two concepts can be used together. For example, in image seg-
mentation, the goal is to classify each pixel of an image. Labels
are often created by drawing polygons on the image, and in each
polygon there are several pixels which are assigned the same
label. If each polygon is considered a group, then each pixel
in a polygon gets the same group ID. Image(s) may be divided
into regions, such that each pixel to classify is assigned to a
distinct subset. For example, in satellite image analysis, as in
the proposed aztrees data (Section 3.4), subsets may be defined
as North/South/etc. In this example, we can use both concepts
at the same time: let labeled pixels from polygons/groups in
the South region/subset be the test set, and define the train set
as labeled pixels from polygons/groups in the Same/Other/All
region/subset. In datasets with imbalanced labels, stratification
may also be used in combination with groups and subsets, in
order to ensure that train and test sets are down-sampled propor-
tionally. Our proposed free/open-source software implementa-
tion of SOAK (https://github.com/tdhock/mlr3resampling) pro-
vides support for using all three concepts together: strata, groups,
subsets.

3 | Methods: Proposed SOAK Algorithm
and Data Sets

In this section, we give details of the proposed SOAK algorithm,
and then give details about the 20 data sets we analyzed (Table 1),
which represent classification problems with 800-2,816,744
rows, 10-27,648 features, 2—11 classes, and 2—-4 subsets.

3.1 | Proposed SOAK Algorithm

We propose SOAK (Same/Other/All K-fold CV), a new variant
of cross-validation which is useful for determining similarity
between learnable and predictable patterns in data subsets. As
in standard K-fold cross-validation for supervised machine learn-
ing, we assume there is a data set with N observations/rows.
Additionally, we assume that the rows can be partitioned into a
certain number of subsets .S, and we would like to estimate the
similarity of learnable/predictable patterns these subsets. Each
subset has an identifier, which we treat here as a category rep-
resented by an integer from 1 to S. For example, in Figure 1,
there are .S = 2 subsets, A and B, which can be visualized as a
new column alongside the features and labels. Note that in our
experiments, the subset column is was not included as a feature
for learning and prediction (but it could be included, if desired).
For each observation/row i, we assume there is a corresponding
subsets; € {1, ..., S}andfoldID k; € {1, ..., K} (assigned ran-
domly or using strata, such that each label/subset has about the
same number of rows with a given fold ID). For example, in the
NCSH_autism data set (Section 3.4), there are two temporal sub-
sets, one for each year (s; = 1 for 2019 and s; = 2 for 2020).

The goal of SOAK is to estimate the prediction error or accuracy
of a learning algorithm, when attempting to predict on a given
subset, and training on that Same subset, or on different subsets
(Others or All). Therefore, our method has a loop over each subset
ce{l,...,S}andfold x € {1, ..., K}. For each, we define the
train/test splits as in Figure 1.

Test: set is {i e{l,...,N}lk,=xands, = a}, all rows i in the
current fold x and subset .

Same: train set is {i € {1, ..., N}|k; # kand s; = ¢ }, all rows i
not in the current fold «, but in the current subset o.

Other: train set is {i € {1, ..., N}|k, # k and s, # o }, all rows
i which are neither in the current fold «, nor in the current
subset c.

All: train setis {i € {1, ..., N}|k; # k }, all rows i not in the cur-
rent fold «.

SOAK runs learning algorithm(s) on Same/Other/All train sets,
then computes the resulting predictions on the Test set for this
subset ¢ and fold x. This is repeated for each fold «, yield-
ing K measures of test error or accuracy for each train set
(Same/Other/All), when predicting on a given subset o. Although
other significance tests have been proposed [39, 40], we pro-
pose for simplicity to quantitatively compare test accuracy or
error values using a two-sided paired ¢-test with K — 1 degrees
of freedom:
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Same versus Other: if test accuracy for Other is comparable
or better than Same, then we can conclude that the learning
algorithm can be trained on other subsets and accurately predict
on this subset. But if test accuracy for Other is worse than Same,
then we can conclude that the learning algorithm is not able to
train on other subsets and accurately predict on this subset.

Same versus All: if test accuracy for All is significantly better than
Same, then we can conclude that combining subsets is beneficial
to the learning algorithm when predicting in this subset. But if
test accuracy for All is significantly worse than Same, then we can
conclude that combining subsets is detrimental to the learning
algorithm when predicting in this subset.

For each subset o, the final output to analyze is the correspond-
ing t-test result (mean error differences and p-values, for Same vs.
Other and Same vs. All).

Mathematical interpretation. A supervised learning algorithm
inputs a train data set and produces a function f,.;,, which typ-
ically aims to output a predicted label J = f,,i,(x) with mini-
mal loss L for the given input x. Classical K-fold cross-validation
provides an empirical estimator of the expected loss L (or accu-
racy, AUC, etc.), assuming test samples (x, y) are drawn from the
same distribution D as train: Eo_p [L(¥. firain-p(x))] The pro-
posed SOAK algorithm involves a subset variable s, which is used
to condition the train and test distributions D. For a fixed test
subset o,

« The Same train/test split estimates  Eyg pj-,
[L(¥: fuainepjs=o(¥))], the expected loss when training
and predicting on subset o.

« The Other train/test split estimates Eyg. pj-,
[L (5. firainpjs2o (X)) ] the expected loss when predicting on
subset o, and training on other subsets.

« The All  train/test split estimates  Egy pj-,
[L(¥. firainp(¥))], the expected loss when predicting
on subset ¢, and training on all subsets.

Standard CV'is a special case. Note that standard K-fold CV is the
special case with .S’ = 1 subset, which means that the Other train
set is empty, the All train set is identical to Same, and so for each
learning algorithm, we have only K test accuracy or error num-
bers (one for each fold/split).

Computational complexity. For each of S test subsets and K folds,
we need to consider training on Same/Other/All subsets, so the
number of train/test splits considered by SOAK is 3SK = O(SK),
which is the number of times each learning algorithm needs to
be run (training and prediction). Importantly, this is linear in the
number of subsets .S, so it is possible to run SOAK on data with a
large number of subsets .S

Implementation Details. SOAK can be easily implemented in
any programming language, by looping over all subsets ¢ €
{1,...,8} and fold IDs k € {1, ..., K}. We implemented the
computational experiments in this paper using the mlr3 frame-
work in R, which made it easy to compute results in parallel
(over all algorithms, data sets, and train/test splits) using the
mlr3batchmark package [41].

3.2 | Image Pairs: Train on MNIST, Predict
on EMNIST or FashionMNIST

The MNIST data set consists of 70,000 images of handwritten dig-
its, and the goal of learning is to accurately classify each image
into one of 10 classes (0-9) [42]. EMNIST is another set of 70,000
images, also of handwritten digits, with balanced classes (see
Table 1, column class Imb.), and a different pre-processing tech-
nique that attempts to scale images to fill the available space [43].
FashionMNIST is a set of 70,000 images, with 7000 examples of
each of 10 classes of clothing [44]. Intuitively, we expect that we
should be able to train on MNIST (images of digits) and get rea-
sonable predictions on EMNIST (because images are also digits),
but not on FashionMNIST (because images are clothing). There-
fore, we created three data sets (Table 1), each with 14,000 images,
by combining MNIST with one of the other variants.

IPair_E: MNIST combined with EMNIST. Note that the raw
EMNIST images are not in the same orientation as MNIST (if
MNIST is upright, then EMNIST appears to be rotated 90°).

IPair_E_rot: MNIST combined with rotated EMNIST (all images
in upright orientation).

IPair_Fashion: MNIST combined with FashionMNIST.

In each of the three data sets, there are two subsets (one from each
source: MNIST and EMNIST or FashionMNIST).

3.3 | Benchmark Data With a Predefined
Train/Test Split

There are many benchmark data sets in the machine learning lit-
erature that include a column to designate a predefined train/test
split. In this paper, we consider several data sets which were
downloaded using torchvision [45]: CIFAR10 [46], EMNIST [43],
FashionMNIST [44], KMNIST [47], MNIST [42], QMNIST [48],
STL10 [49]; several others that are included as supplementary
materials in the textbook of Hastie et al. [1] (spam, vowel, wave-
form), and one data set that was included in both (USPS in torch,
and zip in the textbook, which we call zipUSPS in this paper).
Rather than using the predefined train/test split for its intended
purpose, we instead use it as a subset ID, so each of these data sets
has two subsets (Table 1). By using SOAK on these data, we seek
to answer the question: are the predefined train and test subsets
similar enough, so that if we train on one subset (either prede-
fined = train or test), we can get predictions on the other subset
that are just as accurate as if we had access to the same subset?

3.4 | Real Data From Various Application
Domains With Spatial/Temporal Subsets

CanadaFires data consist of four satellite images of forest fires,
in which we are primarily interested to answer the question: can
we train on some images and accurately predict burned areasin a
new image? (subsets are images of different forest fires) Charac-
terizing the burning pattern using these high-resolution Skysat
images is important because it is used by the Québec govern-
ment to plan salvage operations. Skysat images of forest fires
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that occurred in 2020-2021 were used. In addition, Landsat were
obtained using Google Earth Engine [50]. Each row/observation
in these data is a labeled pixel, and there are columns/features for
Normalized Burn Ratio [51], delta Normalized Burn Ratio [52],
Normalized Difference Vegetation Index [53], Green Chromatic
Coordinates [54], and so forth, for a total of 46 features. Labels
were created for individual pixels, each at least 100 m apart, and
more than 6 m from the image borders, by manually assigning
one of six burn classes, based on a classification that the Québec
government uses to characterize fires. We then transformed the
labels to a binary problem, burned (positive class) versus other
(negative class). There are two versions of these data: A means
All data, and D means Down-sampled to promote class balance,
while retaining representative examples. In these data, we are
interested to see if it is possible to train on a few images/fires
and accurately predict on a new image/fire (there are four such
images/subsets).

aztrees: data come from satellite images around Flagstaff, AZ,
in which we are primarily interested to answer this question:
can we train on some regions, and accurately predict pres-
ence of trees in new regions? (subsets are different regions in
the satellite image) The goal is to predict presence/absence of
trees throughout Arizona, in a project that seeks to determine
the extent to which trees are under stress/drought/bark beetle
infestation. Three sets of satellite images were retrieved from
Google Earth Engine: Sentinel-1, Sentinel-2, and the NASA Shut-
tle Radar Topography Mission (SRTM) Global image [50, 55].
Data were converted so that each row is a pixel, and 20 fea-
tures/columns were computed, including several spectral bands,
Normalized Difference Vegetation Index-NDVI [56], Normal-
ized Difference Infrared Index-NDII [57], Normalized Difference
Water Index-NDWI [58], three Topographic Position-TPI Indexes
[59]. Images were manually labeled using Quantum GIS software
[60] by drawing polygons that indicate seven Land Use/Land
Cover classes (trees, natural grass, planted grass, infrastructure,
bare ground, and open water), then labels were converted into a
binary problem (tree vs. other). There are two variants of these
data, with either 3 (S/NE/NW) or 4 (SE/SW/NE/NW) geographic
subsets, and we would like to know if it is possible to train on
some subsets, and accurately predict on a new subset.

FishSonar_river: data come from sonar imagery of river bottoms,
in which we are primarily interested to answer this question: can
we train on a few rivers and accurately predict areas suitable
for fish spawning on a new river? The goal is to accurately pre-
dict spawning areas of Gulf Sturgeon (Acispenser oxyrinchus des-
otoi) in a wildlife conservation project [61]. In detail, data come
from Humminbird fish finder sonar from surveys in the Pearl
and Pascagoula watersheds in Mississippi, USA over 2021-2023,
then processed with PING-Mapper software [62-65]. Sonar data
give imagery of the river bottom; the goal is to classify each
pixel as either suitable (gravel, cobbles, boulders, and bedrock) or
not (silt, mud, and sand) for Gulf Sturgeon spawning [66]. Data
were converted so that each row is a pixel and each column is
a mean over windows around that pixel (mean pooling, window
size 9). Multiple class labels were first created using Doodler soft-
ware [67] and then transformed to obtain a binary classification
problem: hard bottom (suitable for spawning) versus anything
else. Subsets to train/test on were defined using four different
rivers (Bouie, Chickasawhay, Leaf, Pearl), and we are interested to

see if models learned on a subset of rivers can be used for accurate
prediction on a new river.

NSCH_autism data: consist of two subsets/years (2019 and 2020)
from the National Survey of Children’s Health (NCSH) [68-70].
The goal of this machine learning analysis is to accurately pre-
dict autism diagnosis, using an interpretable model which can
identify a subset of questions/responses that are useful for pre-
diction. Each row represents a child for whom an adult familiar
with the child’s health answered the survey in a given year, and
each column represents a question/response with various cate-
gories such as mental health diagnoses, family income, health
insurance status, healthcare needed and received, neighborhood
characteristics, and so forth. There are two subsets/years in these
data, and we would like to know if training with combined years
results in a more accurate model.

4 | Results: Estimating Differences Between
Subsets in 20 Data Sets

In this section, we show how SOAK can be used to quantify sim-
ilarity/differences of learnable and predictable patterns of the
subsets in 20 data sets. We ran experiments in parallel using a
compute cluster: one CPU per data set, algorithm, and train/test
split (64 GB RAM and 2 days computation time for each).

41 | Comparing Prediction Accuracy
of 5 Learning Algorithms on 20 Data Sets

First, we used standard 10-fold cross-validation on 20 classifi-
cation data sets (Table 1) to compare the prediction accuracy
of 5 learning algorithms (with hyper-parameters tuned using
internal 10-fold cross-validation): cv_glmnet (L1-regularized lin-
ear model); featureless (baseline always predicting most fre-
quent class); rpart (default decision tree learner with no
hyper-parameter tuning); nearest neighbors (tuned 1-20 neigh-
bors); xgboost (gradient boosting, learning rate eta tuned over
5 values on log scale between 0.001 and 1, nrounds tuned over
5 values from 1 to 100). From Figure 2, we see that xgboost was
always the slowest, and sometimes the most accurate; cv_glmnet
had reasonable/intermediate computation time and prediction
accuracy, so we used it for the other experiments with SOAK.

4.2 | SOAK Prediction Error Comparison Plots
Next, we used SOAK with 10-fold CV on each of the 20 data sets
(Table 1) to compute prediction error on each subset after training
cv_glmnet on Same/Other/All subset(s).

Expectation: similarity of predefined train/test subsets. We cate-
gorized each of the 20 data sets according to their subset types:
ImagePair (Section 3.2), pre-defined train/test (Section 3.3), and
time/space (Section 3.4). We expected that some data sets would
have very similar subsets (All model better than Same), and oth-
ers would have very different subsets (Same model better than
All). In particular, since train/test splits are typically assigned
randomly (due to the i.i.d. assumption), we expected to observe
large similarity in the benchmark data sets with predefined
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Q Q N 3»\'6‘ Xex xex '\‘GX xex Q Q N A 0:\' A
Minutes to train (mean+SD over 10 folds in CV)
FIGURE2 | Testerror (top) and training time (bottom) of five algorithms on four data sets.
similarity: very similar similarity: slightly similar similarity: slightly different similarity: very different
- Data: STL10 Data: waveform Data: KMNIST Data: vowel
b otherd o= 8000 roys L 500 rowg ° 10000 rowg 462 rQys b
£ 64.8 89.6 17.8 69.4 30.1 90.5 51.1 920 |g
& othersame | =5_0 025 'p=0.458 ~p<0.001 p<0.001 2
> 1 e e ——— ® e ©| | == - | 2
o ™7 B30 90.9 16.3 65.3 26.4 90.1 | | 14.8 909 |§
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% 61.7 902 159 653 276 902 341 91 8
2 other 1 =em 5000 roys 300 rowg J 60000 rows om 228 TOWS | D
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& other-same 1 "p=0.230 "p=0.231 ~p<0.001 p<0.001 =
3 same-{ e o || ——— e ||o o —— - |8
c 65.2 91.1 21.3 64.5 17.8 90.1 31.8 90.9 @
5 all-same 1 =h_0 006 "p=0.136 p=0.503 'p=0.343 it
9 all 4 =e= - —— e ||o o) —— e g.
& 624 891 172 667 |l178 | 901 318, 89 8
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Percent prediction error on CV test set in predefined set (mean +/- SD over 10 folds)
. a a
algorithm =e= cv_gimnet =e= featureless
FIGURE3 | SOAK was used tocompute mean/SD of test error over 10 cross-validation folds, and p-values for differences (other-same and all-same),

in each of four data sets in which there were two subsets (predefined train/test assignments in the data table). For data sets that have similar learn-
able/predictable patterns (left), training on all subsets has smaller test error than same, and training on other has either smaller or larger test error than
same (depending on number of rows in subset). For data sets that have different learnable/predictable patterns (right), training on all subsets never has
smaller test error than same, and training on other always has larger test error than same.

train/test subsets, such as in STL10, waveform, KMNIST, and
vowel data sets (Figure 3).

Similarity observed between predefined train/test subsets in STL10
and waveform. Two of those data sets (STL10 and waveform)
exhibited evidence of similarity between subsets: All test error
was smaller than Same test error (STL10 significantly, p < 0.05 in
two-sided paired t4-tests; waveform slightly, p = 0.042 and 0.136).
Additional evidence of similarity between subsets in STL10 was
that Other test error was significantly larger or smaller than Same
(depending on sample size, predefined train subset had 8000
rows, whereas predefined test subset had only 5000 rows). These
data provide evidence that in the STL10 and waveform bench-
mark data, the predefined train/test splits were created by ran-
dom assignment.

Differences observed between predefined train/test subsets in
KMNIST and vowel. Surprisingly, there were two benchmark data
sets (KMNIST and vowel) which exhibited differences between
learnable/predictable patterns in predefined train/test subsets.
Other test error was significantly larger than Same (mean dif-
ference of 5%-25%, p < 0.001), indicating that the linear model
was not capable of learning on one subset and accurately pre-
dicting on the other. All test error was 1%-20% larger than Same
when predicting on the smaller subset (predefined test subset,
p < 0.001), and All test error was not significantly different from
Same when predicting on the larger subset (predefined train sub-
set, p = 0.343 to 0.503).

Synthesis and conclusions. Figure 3 suggests that two bench-
mark data sets have similar predefined train/test subsets (STL10
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Data set: FishSonar_river (4 different subsets)
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o oth 1700500043, S
B cara - 0.9741£0.0019 0.9695:0.004 85 3¢
8- 0.9747£0.0018 0.97170.0041, oS
?
% other - 0.9740+0.0017 0.9637+0.0076 N3 g
E came- 0.9759:0.0014 0.9658+0.0093 25 82
all - 0.9759+0.0019 0.9670+0.0083 o
1% e 10 ;1 Ry ol ;10 1
o? of o? o? o? of 0? o?
cv_glmnet performance on CV test subset (mean+SD over 10 folds in CV)
FIGURE 4 SOAK yields identical conclusions about similarity of subsets, using either proportion accuracy (accuracy_prop, left) or Area Under the
yi y g prop y y_prop

ROC Curve (AUC, right) as the performance metric. Top: In the FishSonar_river data, training on the Same subset always has larger accuracy/AUC than

Other/All, indicating that the cv_glmnet algorithm is unable to generalize between subsets in these data. Bottom: In the NSCH_autism data, training

on All never yields smaller accuracy/AUC than Same, indicating that the cv_glmnet algorithm is able to generalize between subsets in these data.

and waveform), whereas two others have different predefined
train/test subsets (KMNIST and vowel). These results are con-
sistent with the method used to construct the vowel data, which
used different speakers for train and test subsets: “Four male and
four female speakers were used to train the networks, and the
other four male and three female speakers were used for testing
the performance” [71]. Because the vowel subsets correspond to
different speakers, our results indicate that these speakers pro-
duce signals that are too different for the linear model to benefit
from combining different speakers when training. These results
suggest that for optimal prediction accuracy in the vowel data,
different linear models should be trained for each speaker. Over-
all, itis clear that by running SOAK then plotting Same/Other/All
test error (Figure 3), it is possible to estimate the extent of simi-
larity/differences between learnable and predictable patterns in
data subsets.

4.3 | Results Consistent Using Accuracy
and AUC

Because most data sets we considered had more than two classes
(Table 1), we performed most of our analyses using the evalua-
tion metric defined as percent incorrectly predicted labels in the

test set, which is applicable for data sets with any number of
classes. For data sets with only two classes, we also performed
analyses using the evaluation metric defined as the Area Under
the ROC Curve (AUC), which is only applicable in data sets
with two classes. Our hypothesis was that in data sets with large
class imbalance, SOAK may yield different conclusions about
whether or not subsets are similar, using different evaluation
metrics. To test this hypothesis, we used SOAK with two evalu-
ation metrics for the binary data sets: accuracy rate or AUC. Con-
trary to our hypothesis, we observed that the relative ranking of
Same/All/Other models was preserved across the two evaluation
metrics, for the vast majority of test subsets. For example, Figure 4
shows results on two representative data sets: NSCH_autism and
FishSonar_river. In the FishSonar_river data, training on the
Same subset always has larger accuracy/AUC than Other/All,
indicating that the cv_glmnet algorithm is unable to general-
ize between subsets in these data. When predicting on 2020 in
NSCH_autism data, we observed All=Same accuracy rates of
0.9759; AUC values were slightly larger for All (0.9670) compared
to Same (0.9658). Results using both AUC and accuracy are there-
fore compatible with the hypothesis that in the NSCH_autism
data, the cv_glmnet algorithm is able to generalize between
subsets in these data (All accuracy/AUC is never smaller than
Same). Overall, these results suggest that SOAK yields similar
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FIGURE5 | Comparing test error when training on Same or All subsets. Mean and standard deviation of test error are shown as dots/segments,

along with text showing difference between means (All-Same) and p-value in two-sided paired #,-test, for each test subset (sorted by mean test error

difference per data set).

conclusions about similarity of subsets, using either accuracy rate
or AUC as the performance metric. In data sets with two classes,
AUC should be the preferred evaluation metric in order to prop-
erly handle class imbalance.

4.4 | SOAK Summary Plots of Test Error
Differences and p-Values

After running SOAK on each of the 20 data sets using the
cv_glmnet regularized linear model, we wanted to create visual
summaries of results across all data sets and test subsets. First,
we plotted mean and standard deviation of test error over the 10
cross-validation folds, for each test subset (Figure 5). This plot
compares the test error rates when training on Same and All sub-
sets, and it is clear that Same is better in some data sets (top),
whereas All is better in others (bottom). The data sets with the
largest advantages for Same were vowel, image pair (IPair_*) and
Canada Fires—these are the data sets for which training the lin-
ear model on All combined subsets was detrimental to predic-
tion accuracy (with respect to training on only the Same subset).
The data sets with the largest advantages for All were waveform,
STL10, and CIFAR10—these are the data sets for which train-
ing the linear model on All combined subsets was beneficial to
prediction accuracy (with respect to training on only the Same
subset). Overall, this analysis shows that combining subsets when
training the linear model is only beneficial in some data sets (and
is detrimental in the others).

Next, we plotted test error differences (All-Same, Figure 6;
Other-Same, Figure 7), and p-values (two-sided paired 7y-test
because we used 10-fold CV). Each plot/table shows a line/row
representing the min/max test error difference and p-value, over
the 2-4 subsets in each data set. When analyzing All-Same test
error differences (Figure 6), it is clear that the data sets can be
divided into two categories: 10 data sets have similar subsets (neg-
ative test error differences, All-Same) and the other 10 have dif-
ferent subsets (zero or positive test error differences). Similarly
when analyzing Other-Same test error differences (Figure 7), we
obtain the same categorization of 10 data sets with similar subsets
(min Other-Same test error difference negative, max positive),
and 10 data sets with different subsets (min/max test error differ-
ence both positive). As expected, real data sets with space/time
subsets, and ImagePair data, tended to have different subsets,
whereas data with predefined train/test subsets were mostly simi-
lar (exceptions were NSCH_autism real data with slight similarity
of subsets/years, and vowel/KMNIST with different predefined
train/test subsets). Overall, these SOAK scatterplots/tables allow
categorization of data sets as having subsets with either similar
or different learnable/predictable patterns.

5 | Discussion and Conclusions

5.1 | Image Pairs: MNIST Data Combined With
EMNIST/FashionMNIST

Our goal in analyzing these three data sets (explained in
Section 3.2) was to quantify our intuition that MNIST/EMNIST
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Is it beneficial to combine subsets?

Subset type
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o B .6, 4. 4, -8.
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o ‘[ * - e STL10 -2.0,-1.5  -3.2,-2.2
% 24 o — e zipUSPS -2.2,-0.1  -1.8,-0.5
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<- highly significant -- log10(p-value) -- not significant ->

FIGURE6 |

SOAK was used to compute mean test error differences (All-Same) and p-values for each test subset, over 10 cross-validation folds. Line

segments and table show min/max values over 2-4 test subsets in each data set; dot shows mean. Horizontal black line separates data sets by the degree
of differences in learnable/predictable patterns: Top 10 for large differences (min/max ErrorDiff positive or zero: Never beneficial to combine subsets
when training) and bottom 10 for small differences (min/max ErrorDiff negative or zero: Never detrimental to combine subsets).
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FIGURE7 |

SOAK was used to compute mean test error differences (Other-Same) and p-values for each test subset, over 10 cross-validation folds.

Line segments and table show min/max values over 2-4 test subsets in each data set; dot shows mean. Horizontal black line separates data sets by the

degree of differences in learnable/predictable patterns: Top 10 for large differences (min/max ErrorDiff both positive: Inaccurate prediction on all new

subsets) and bottom 10 for small differences (min ErrorDiff negative, max positive: Accurate prediction on at least one new subset).

are more similar than MNIST/FashionMNIST. We expected
that the worst prediction accuracy should be in IPair_Fashion,
because the subsets are most different (images of digits/clothing),
and that is what we observed (Figure 7, Other-Same test error
differences of 77.5%-84.7%, p < 10717). We expected an inter-
mediate prediction accuracy for IPair_E, because both subsets
are images of digits (although not in the same orientation), and
that is what we observed (Figure 7, Other-Same test error dif-
ferences of 73.2%-74.7%, p < 107'%). We expected best predic-
tion accuracy for IPair_E_rot, because both subsets are images
of digits (in the same orientation), and that is what we observed
(Figure 7, Other-Same test error differences of 36.7%-38.8%, p <

10715). Overall, our SOAK analysis indicates that after training on
MNIST, the linear model predictions on EMNIST are better than
on FashionMNIST, but still not as good as prediction on MNIST
(positive Other-Same differences in Figure 7), which is consis-
tent with the different method used to construct the EMNIST
data [43].

5.2 | A Neural Network Benefits From
Combining EMNIST With MNIST

In the IPair_E_rot data, because both subsets are images of digits
(in the same orientation, from MNIST and EMNIST data sets),
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FIGURE S8 | SOAK was used on IPair_E_rot data, which has two subsets of images of digits (from MNIST and EMNIST, in the same orientation).
Top: The convolutional neural network (torch_conv) is more accurate than the linear models (cv_glmnet_min and torch_linear), but training on the
Same subset is still more accurate than Other, indicating that it is surprisingly difficult to generalize between MNIST and EMNIST images (due to their
different pre-processing techniques). Bottom: For torch_conv, Other had significantly larger test error rates, whereas All had slightly (predict on

EMNIST _rot) or significantly (predict on MNIST) smaller test error rates when compared to Same.

we expected that the Other model should provide as accurate
predictions as Same, using a more powerful learning algorithm
than the linear model. To test this hypothesis, we used SOAK on
the IPair_E_rot data with two different neural networks imple-
mented using the torch R package [72], and the mlr3 framework
[38]. First, torch_conv is a convolutional neural network with
architecture defined as follows: first layer 2d convolution with
kernel size 6 and 20 output channels, ReLU activation, 2d max
pooling with kernel size 4 and stride 4, fully connected layer with
50 hidden output units, ReLU activation, fully connected layer
to the 10 outputs. Second, torch_dense 50 is a fully connected
neural network with one hidden layer of 50 hidden units and
ReLU activation. Stochastic gradient descent was used for train-
ing with cross-entropy loss, learning rate 0.1, and batch size 100.
Early stopping regularization was used to determine the optimal
number of epochs (from 1 to the max of 200): an internal vali-
dation split with 50% of training data was used, and the number
of epochs with minimal validation loss was defined as optimal,
and then the network was re-initialized and re-trained using the
optimal number of epochs.

Neural network Other models are less accurate than Same models.
Figure 8 shows the error rates with respect to the held-out test
sets in SOAK. As expected, the convolutional neural network has
smaller error rates than the linear models (cv_glmnet_min and
torch_linear). Surprisingly, the error rates for Other were signifi-
cantly larger than the Same, even for the convolutional network.
For example, when predicting on MNIST, the convolutional net-
work had 1.2% + 0.2% (mean + SD) test error when training on

MNIST (Same model, Figure 8, top), whereas it had 7.0% + 1.2%
test error when training on EMNIST_rot (Other model). These
data convincingly show that generalization between these two
image data sets (MNIST and EMNIST) is surprisingly difficult,
even for a convolutional neural network.

Convolutional network All models are more accurate than Same
models. Interestingly, we observed that the convolutional net-
work was able to benefit from combining subsets when training.
In particular, we observed that All test error rate was smaller
than Same, either slightly (p =0.1759 in paired #,-test, predict on
EMNIST _rot, Figure 8, bottom) or significantly (p =0.0166, pre-
dict on MNIST). These results show that the EMNIST/MNIST
data are too different for training on one and predicting accu-
rately on the other (at least with the models we examined), but
are sufficiently similar so that the convolutional neural network
benefits when it can train using data from both subsets.

5.3 | Analysis of Data With Predefined
Train/Test Subsets

In analyzing these 11 data sets, our goal was to verify that
most data sets have similar predefined train/test splits (when
training and predicting using a linear model). In examining
Figures 5-7, we observed that most data sets with predefined
train/test subsets were in the similar category (MNIST, Fashion-
MNIST, QMNIST, STL10, CIFAR10, EMNIST, waveform, spam,
zipUSPS), and two had clearly different subsets (vowel and
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KMNIST). Our SOAK analysis with a linear model suggests that
the predefined train/test splits in vowel/KMNIST represent prob-
lems that may not be i.i.d.

6 | Conclusions and Future Work

We presented Same/Other/All K-fold cross-validation (SOAK),
which is a new method that can be used to estimate the extent of
similarity and differences between learnable and predictable pat-
terns in data subsets. We showed how SOAK can be used to gain
insights about 20 real-world and benchmark data sets. We quan-
titatively verified that a model trained on MNIST digits is not as
accurate on FashionMNIST (clothing) as on EMNIST (digits). We
were also able to verify that most benchmark data had similar pre-
defined train/test subsets (except vowel/KMNIST). We observed
significant differences between learnable and predictable pat-
terns in space/time subsets of several new benchmarks based on
segmentation problems (Canada forest fires, Arizona trees, Fish
sonar river bottoms). Results for NSCH_autism indicate it would
be slightly beneficial to train a model on the combined data from
different years (Figures 4-6).

It is important to note that the results from a SOAK analysis are
limited to the observed data subsets and may not be representa-
tive of new data subsets that could be collected in the future. For
example, the NSCH_autism data consists of two subsets, 2019 and
2020. We observed that it was beneficial to combine these subsets
when training the linear model. These results suggest that it may
also be beneficial to add 2021 data to the training set when those
data become available. However, if there is a very different pat-
tern in the 2021 data, it may not be beneficial. To determine if
the new 2021 subset is compatible with the previous subsets, we
would recommend running SOAK on all three subsets when the
new data become available.

We expect that the proposed SOAK algorithm will be very useful
in practical applications of machine learning, in order to esti-
mate how accurate predictions can be on qualitatively different
subsets of data (time periods, hospitals in medical data, geo-
graphical regions in satellite data, characterizing fairness across
age/sex/race subsets in demographic data, etc.). Future work
includes algorithms for efficiently searching the space of subsets
to use for training, which is a combinatorial problem, but may be
tractable with submodular optimization [73]. We observed how
sample size can affect prediction accuracy (Figure 3), and we
will be interested to more thoroughly investigate that effect using
SOAK with train sets that are down-sampled to equivalent sizes.

Limitations: SOAK is only applicable to data sets with subsets of
interest (this may not be true of all data sets), for which there
is enough time to use K-fold cross-validation (we used a linear
model, which is fast enough, but this may not be appropriate for
other learning algorithms, especially deep neural networks with
lots of parameters).
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