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Abstract—In our increasingly digital and networked society,
computer code is responsible for many essential tasks. There are
an increasing number of attacks on such code using unpatched
security vulnerabilities. Therefore, it is important to create tools
that can automatically identify or predict security vulnerabilities
in code, in order to prevent such attacks. In this paper we focus on
methods for predicting security vulnerabilities based on analysis
of the source code as a text file. In recent years many attempts
to solve this problem involve natural language processing (NLP)
methods which use neural networks-based techniques where
tokens in the source code are mapped into a vector in a
Euclidean space which has dimension much lower than the
dimensionality of the encoding of tokens. Those embedding-type
methods were shown effective solving problems like sentence
completion, indexing large corpora of texts, classifying & or-
ganizing documents and more. However, it is often necessary to
extract an interpretation for which features are important for
the decision rule of the learned model. A weakness of neural
networks-based methods is lack of such interpretability. In this
paper we show how L1 regularized linear models can be used
with engineered features, in order to supplement neural network
embedding features. Our approach yields models which are more
interpretable and more accurate than models which only use
neural network based feature embeddings. Our empirical results
in cross-validation experiments show that the linear models with
interpretable features are significantly more accurate than models
with neural network embedding features alone. We additionally
show that nearly all of the features were used in the learned
models, and that trained models generalize to some extent to
other data sets.

Index Terms—vulnerability detection, static code analysis,
interpretable linear models, L1 regularization.

I. INTRODUCTION AND RELATED WORK

Every day more parts of society are becoming influenced

and controlled by computers. To keep the normal functions of

society running as intended, it is therefore important for the

code that controls these computers to be running as intended.

However, a computer system may not function as intended

due to a software vulnerability, meaning a flaw in the code

that is exploited by a malicious third party. The concept of

a software vulnerability has been formally defined as a fault

in the specification, development, or configuration of software

such that its execution can violate a security policy [Krsul,

1998]. It is therefore important to be able to identify and fix

software vulnerabilities.

Previous research has used white-box univariate statistical

tests, based on the internal metrics of code complexity, churn,

and developer activity [Shin et al., 2010], as defined by

the international organization for standardization [ISO and

IEC, 2003]. Proposed complexity metrics for a given function

include number of lines of code, cyclomatic complexity, and

number of parameters. We limit our study to metrics in this

first category. Proposed churn metrics include number of com-

mits in a time period, number of lines changed, and number of

new lines added. Proposed developer activity metrics include

number of developers who committed changes, number of

developers not central to the project, etc, and have a clear prior

interpretation in terms of which values are problematic (large

number of developers working on one file is claimed to be

problematic). That previous paper used univariate significance

tests, which are interpretable in terms of what features are

correlated with code vulnerabilities, but do not offer any

prediction error analysis.

There are a variety of previously proposed methods which

use machine learning for predicting vulnerabilities from source

code. Yamaguchi et al. [2011] proposed an analysis of the

FFmpeg source code, by representing each function as a

TFIDF vector of symbols used in that function, then using

unsupervised principal components analysis, and computing

cosine similarity with a known vulnerability [Salton and

McGill, 1983]. Bilgin et al. [2020] proposed machine learning

based on an abstract syntax tree, applied to the Draper VDISC

data set [Russell et al., 2018], using a multi-task neural

network, and comparing with a code2vec representation [Alon

et al., 2019]. Harer et al. [2018] proposed learning based on

the source code control flow graph, using the random forest

learning algorithm. In all of these previous studies, there has

been no interpretability analysis (which features are important

for making the prediction of vulnerability).

Neural networks have been proposed to learn feature em-

beddings for vulnerability prediction [Dam et al., 2017]. In

previous work, neural networks and boosting algorithms were

proposed, with various over-sampling techniques investigated

in order to deal with class imbalance [Barr et al., 2020, Barr

et al., 2021, Barr and Thatcher, 2022, Barr et al., 2019]. Such

algorithms can be considered a black box, so are difficult to

interpret in terms of which features are used and important for

prediction.

In this paper we study the extent to which software vul-

nerabilities can be predicted by machine learning analysis of

the corresponding source code. Previous work falls into either

completely white-box statistical methods with no prediction
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accuracy analysis, or completely black-box machine learning

methods with no interpretability analysis. In contrast we

propose building a multivariate predictive model, and selecting

important features using L1 regularization. In particular, we

are interested in machine learning algorithms which are not

only accurate at predicting vulnerabilities, but can also provide

an explanation or interpretation about what parts of the source

code may be responsible for the vulnerability. The main

novelty of our paper is the idea to use L1 regularized linear

models to combine the prediction accuracy analysis typical

of black-box neural networks with the interpretability analysis

typical of white-box statistical methods.

II. DATA SETS

We investigated open source code data sets based on the

Linux kernel (in C programming language), the openssl library

(in C), and the Android OS source code (C and Java com-

ponents), link found in Google & The Open Handset Alliance

[2020]. For each source code data set we used the Common
Vulnerabilities & Exposure database to give a bi-

nary label to each function: known to be vulnerable, or not

Mitre Corporation [2020].

For each data set we computed features for each function,

with the goal of using machine learning to predict whether

or not a new function should be classified as vulnerable or

not. Table I shows for each data set, the total number of

functions, and the number of positive and negative labels.

Note that we created a “full” data set which consists of all

of the data from the four primary data sets (openssl, linux,

android c, android java), and a “C” data set which consists

of just the data from C programming language (openssl,

linux, android c). The “full” data set consists of 2.4 million

labeled functions, of which only 17,205 were labeled as

positive/vulnerable examples (0.71%). Over all six data sets

the percent of positive/vulnerable labels varied from 0.13%

for android java to 1.59% for android c.

For each function we computed a set of three kinds of

features. First, we used previously described methods to

compute a set of 128 neural network embedding features

using a recurrent network trained to predict the next token

in the sequence defined by a function’s source code [Barr

et al., 2020, Barr et al., 2021, Barr and Thatcher, 2022, Barr

et al., 2019]. Second, in order to quantify the complexity

of the function [Shin et al., 2010], we computed a set of 8

interpretable features for each function. These interpretable

features included the number of parameters/arguments, the

number of tokens, and others (details given in Table II).

Finally, we computed interaction features for each pair of

interpretable features, by multiplying the feature values. We

expected that the interaction features should be helpful to

obtain increased prediction accuracy using the linear model,

but less helpful using the non-linear gradient boosting learner.

III. ALGORITHMS

In this section we briefly explain the interpretable machine

learning algorithms that we used in our analysis. First, let

x = [x1, . . . , xd] ∈ R
d be a vector of d inputs/features, one

for each attribute of the source code that we will use to make

a prediction (for example, number of comments, number of

lines, or one of the learned neural network features). Also,

let y ∈ {−1, 1} be the corresponding output, a binary class

label (1 if the code has a known vulnerability, 0 otherwise).

In this context, our goal is to learn a binary classification

function c : Rd → {−1, 1}, which gives accurate predictions

on new/test data. We limit our study to one type of inter-

pretable/explainable learning algorithm: L1 regularized linear

models.

A. L1 regularized Logistic Regression

In a linear model, there are two kinds of parameters to learn:

β ∈ R is the intercept, and w = [w1, . . . , wd] ∈ R
d is a weight

vector (one for each of the input features). The goal is to learn

a function f(x) = β +wTx ∈ R which outputs a real-valued

score. Larger scores are more likely to be positive examples,

and the threshold of zero is used to obtain the classification,

c(x) = sign[f(x)]. To obtain an interpretable linear model,

we use the Lasso/L1 regularization technique of [Tibshirani,

1996], which computes a simple model in which only a subset

of inputs/features are used for prediction. Let (xi, yi)
n
i=1 be

the set of inputs/outputs in the training data, let λ > 0 be a

regularization parameter, and let �(ŷ, y) = log[1 + exp(−ŷy)]
be the logistic loss (negative binomial log likelihood / NLL).

The L1 regularized logistic regression model parameters are

defined as the solution to the following optimization problem:

βλ,wλ = argmin
λ,w

n∑

i=1

�[β +wTxi, yi] + λ||w||1. (1)

For sufficiently large λ, the L1-norm penalty causes some

of the weights in w to be reduced to zero, which means

the corresponding inputs/features do not affect the predicted

scores. The linear model is thus interpretable in the sense

that there is a certain subset of inputs/features which are

used for prediction (wj �= 0), whereas others are not (wj =
0). We used the implementation provided in R function

glmnet::cv.glmnet [Friedman et al., 2010], which se-

lects the penalty λ using 10-fold cross-validation. Briefly, the

train set is split into subtrain/validation sets; for each split the

subtrain set is used to solve (1) for a grid of regularization λ
values, and the validation set is used to compute held-out NLL

�. The regularization λ value which results in the minimum

NLL is selected (intuitively, this is the model with best

accuracy on the new/validation data). Typically that results

in some intermediate number of features being selected, so

the selected model automatically ignores a certain number

of inputs/features which are irrelevant for making accurate

predictions.

B. Gradient boosting as a non-linear baseline

In addition to running our L1 regularized logistic regression

algorithm for interpretability purposes, we ran a gradient

boosting algorithm as a non-linear baseline (to get an idea

if there were any non-linear trends in the data that were not
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Data set name
label openssl linux android c android java C full
1(vulnerable) 76 2,047 13,796 1,286 15,919 17,205
0(not) 13,120 548,142 852,634 982,334 1,413,896 2,396,230
total 13,196 550,189 866,430 983,620 1,429,815 2,413,435
Percent vulnerable 0.58% 0.37% 1.59% 0.13% 1.11% 0.71%

TABLE I
NUMBER OF LABELS IN EACH OF THE SIX DATA SETS THAT WERE ANALYZED.

Abbreviation Description
cos correlation (cosine) on a record with the mean of all others.
par The number of parameters/arguments of a function
CC cyclomatic complexity generated by the Python library “lizard”
len number of tokens (space-delimited) in a function
loo count of for and while loops.
con Branch-if complexity. (Number of ifs)
sys Number of system calls (to a Unix/Linux function)
max The maximum number of tokens in a line (between two successive semicolons)

TABLE II
ABBREVIATION AND DESCRIPTION FOR EACH OF THE INTERPRETABLE FEATURES.

captured by the linear model). In detail, we used R package

SuperLearner [Polley et al., 2021] to train an ensemble of

xgboost models [Chen et al., 2022] with the following values

for the shrinkage (also called eta/learning rate) parameter,

{10−4, 10−3.5, . . . , 10−1}. We used binomial family for gra-

dients (also known as binary:logistic objective in xgboost),

and 3-fold cross-validation with AUC maximization as the

criterion to optimize for model combination. We expected that

this gradient boosting learner should be at least as accurate as

the linear model, and more accurate if there are non-linear

patterns in the data.

C. Cross-validation setup

To evaluate the prediction accuracy of the learned models,

we use 10-fold cross validation. In detail, we assign a fold ID

from 1 to 10 to each of the 2.4 million observations. For any

given fold ID, we set aside the corresponding observations

with that fold ID as test sets. We use observations with

different fold IDs to create train sets, which are used as

input to the learning algorithms. After obtaining the result-

ing predictive model from the learning algorithm (including

hyper-parameter learning/selection), the final model is used to

compute predictions and accuracy metrics on the test set(s).

D. Interpretation methods

We used 10-fold cross-validation, so there are a total of

ten linear models that were learned (one for each train/test

split). We interpret the ten models in terms of their learned

coefficient/weight vectors w = [w1, . . . , wp]. Features with

coefficient/weight values of zero, wj = 0, are not used at

all in the predicted score computation, so can be discarded

and interpreted as un-important. Features with non-zero coef-

ficient/weight values, wj �= 0, contibute to the predicted score

computation. For each feature j, we report the number of times

the feature has been selected (with a non-zero coefficient) out

of the ten possible models/folds, and we also take the mean of

the coefficient/weight values across the ten models/folds. More

important features will have been selected in more folds, and

have larger absolute values for the weights/coefficients.

For each test example x, we can use the predicted score

f(x) to rank the example in terms of how likely it is to

contain a code vulnerability. In a given test set of functions

with possible code vulnerabilities, we can therefore focus our

code debugging efforts on the set of examples with the largest

predicted scores (say the top 100). For each such test example,

we can use the following method to rank the features in terms

of order of importance to the prediction as possibly vulnerable.

For each feature j ∈ R
p, we exclude the corresponding entry

of the feature vector xj from the predicted score, and then rank

the features in terms of how much the predicted score changes.

More formally, we define the predicted score excluding feature

j as fj(x) = β +
∑

i �=j wixi. We then subtract this quantity

from the actual predicted score, f(x)− fj(x) = wjxj , which

we can sort to obtain a measure of how important feature

j was for the vulnerable classification. Large wjxj values

are associated with features which are very important for the

negative classification.

IV. RESULTS

In this section we discuss the results of the computational

cross-validation experiments which we performed on the vul-

nerability prediction data sets.

A. Comparing prediction accuracy of linear and nonlinear
models

To determine if the L1-regularized linear model was cap-

turing mostly all of the patterns in the data, we compared

its prediction accuracy to the xgboost non-linear baseline. We

expected that if there were significant non-linear trends in the

data, then the xgboost learner would be significantly more

accurate. We used the openssl data set for these comparisons,

because it was the smallest data set (and therefore had the

smallest time and memory requirements).

For feature representations that used the neural network

embedding, we observed significant differences between xg-
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boost with identity weights and L1-regularized linear models

with balanced weights (Figure 1). For example, the best test

AUC was achieved by the models which used all 164 feature

columns, for which xgboost with identity weights was slightly

more accurate than cv.glmnet with balanced weights (Test

AUC difference = 0.054, p-value in paired one-sided t9-test

= 0.004). However, there was little difference in accuracy

between these models when they were only trained using the

interpretable and interaction features (Test AUC differences

0.005–0.014, p-values 0.195–0.353). Surprisingly we observed

that xgboost with balanced weights always learned a trivial

model (test AUC=0.5), and cv.glmnet with identity weights

learned a trivial model when trained without the neural net-

work embedding features. Overall these data indicate that

the linear models are nearly as accurate as the non-linear

xgboost baseline, but there are some non-linear patterns in

the embedding features that the linear model was not able to

capture.

B. Accuracy when predicting on other data sets

Next, we wanted to investigate the extent to which the

learned linear models could be used for prediction in the

context of other data sets. To do that we trained linear models

using all features, on each of the six data sets and ten train/test

splits in 10-fold CV. Each trained model was then used for

prediction in each of the six corresponding test sets. We

expected that the most accurate models would be the ones

trained using the same data as the test set. In agreement with

these expectations, we observed that in each test set, the most

accurate models had been trained using data from that same

set (Figure 2). For example, the most accurate models were

in the android java data set, for which the best models had

test AUC of about 0.92 (trained on android java), whereas

the next best had test AUC of only about 0.86 (trained on full

data; test AUC difference of 0.0735 with p-value of 10−9).

Each data set showed a significant difference between the best

model and the next best, with the smallest difference for C data

(test AUC difference = 0.008, p-value = 10−8), and the largest

difference for openssl data (test AUC difference = 0.0742, p-

value = 0.005). Overall these results indicate that it is essential

to train models on data which is quite similar to the test set,

if optimal accuracy is desired.

C. Comparing accuracy metrics on the full data set

To determine which features were important for optimal

prediction accuracy, we trained models using different feature

subsets (interpretable, interpretable and interaction, embed-

ding, all), and then computed predictions and accuracy metrics

using 10-fold CV. We expected that the regularized linear

models would be most accurate using all of the features,

because the built-in L1 regularization automatically excludes

any irrelevant features. In agreement with this expectation, we

observed that the models trained on all features were indeed

the most accurate, using three different accuracy metrics on the

test set: lift difference, AUC, and percent accuracy (Figure 3.

In particular, we observed that the models trained on all

features were significantly more accurate than the models

trained using just the neural network embedding features

(test AUC difference = 0.008, p-value = 10−11). These data

provide convincing evidence that both the interpretable and the

neural network embedding features are necessary for optimal

prediction accuracy.

D. Interpretation of learned linear model weights

To compare the weights for various features, we created a

heat map of the weights which were learned in linear models

trained on all of the features (for every one of the six data sets,

and taking the mean over all ten cross-validation folds). In our

heat map we display a mean weight of zero as white (Figure 4),

which represents a weight which was completely ignored in all

ten train/test splits. To facilitate comparison and visualization

of weights with small absolute magnitude, we display relative

weight values in our heat map. More specifically, we first take

the log of the absolute value of each weight, then normalize

all values to between zero and one, then finally multiply by

the sign of the original weight. The result is a set of relative

weight values between -1 and 1, such that it is easy to visually

distinguish a weight of zero from a weight with small non-zero

absolute value (such weights would appear indistinguishable

from zero on the original scale). We additionally draw a

number on the heat map tile if the number of folds/splits

with non-zero weights was between 1 and 9; for visualization

clarity we omit drawing this number for 0 folds/splits (appears

as a white heat map tile) and for 10 folds/splits (appears as a

colored heat map tile).

In Figure 4 there are several trends which are apparent.

First, there are five features which are not used at all in any

data sets, and these are all interaction features (for example

len:con, multiplication of number of tokens by number of if

statements). All of the other features (interpretable features and

neural network embedding features) were selected in at least

one data set and fold, indicating that they are all somewhat

useful for prediction. There was only one feature, cos:CC,

cosine similarity multiplied by cyclomatic complexity, which

was always selected using every data set and fold, and always

had the same sign. There were a number of features which

were used for prediction in only one data set (for example,

the number of loops is only used for prediction in android C

data, and the C/full data which contain android C data). Finally

there were a number of features which had positive weight

using some training data, and negative weight using others.

An interesting example is the cos feature (cosine similarity),

which had zero weight using openssl data, negative weight

using linux data, and positive weight using the other data. This

is interesting as it indicates a larger value of the cos feature

means increased probability of vulnerability in the context of

android functions, but decreased probability of vulnerability

in the context of linux functions. There are many dozen other

examples of neural network embedding features which had

learned weights with opposite signs in different data sets (but

these features are not interpretable, so it is not clear what the

sign reversal means). Overall our heat map was highly useful
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Fig. 1. Test AUC of nonlinear xgboost models and linear cv.glmnet models on the openssl data (mean ± SD over 10 train/test splits).

Fig. 2. Comparing test AUC of linear models trained using balanced weights on different subsets of observations. It is clear that in each test set (panels), the
most accurate model was trained on data from the same source.

Fig. 3. Comparing three accuracy metrics for linear models trained on the full set of observations, using four different sets of features, and two different loss
weighting methods (identity and balanced).
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for interpreting which features were used for prediction (or

not) using our learned linear models.

V. DISCUSSION AND CONCLUSIONS

In this paper we proposed an interpretable machine learning

algorithm for predicting software vulnerabilities. In particular,

we proposed using a linear model with L1 regularization,

which is interpretable in terms of which features are important

(non-zero weights) or not (zero weights) for making vulner-

ability predictions. We also provided a systematic analysis

of several source code data sets, which indicated that both

interpretable features, and neural network embedding features,

were necessary to obtain optimal prediction accuracy. Finally,

we observed that generalization between data sets is possible

to some extent, but that the best predictions were obtained by

training on data from the same set.

In our paper we considered only interpretable features which

measured code complexity (number of lines, loops, etc). For

future work, we could expand the set of interpretable features

to include measures of code churn and developer activity [Shin

et al., 2010]. Additionally, we observed that the xgboost non-

linear learner was slightly more accurate than the proposed

interpretable linear models, in the context of the openssl data

set. For future work, we could expand this analysis to other

data sets, and interpretable non-linear learning algorithms such

as decision trees.
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Fig. 4. Heat map of coefficients learned in the linear models trained on six different data subsets, using all of the features. In order to visualize subtle
differences between coefficients close to zero, we use a relative color scale to plot the mean of the ten coefficients computed over all train/test splits (darker
means larger in absolute value). The number of splits for which the coefficient was non-zero is shown as a number (for 1–9 splits), or white (for 0 splits);
otherwise that coefficient was non-zero in all ten splits. Of all the interpretable features, only one (cos) had coefficients of different signs in different data
sets (negative in linux, zero in openssl, positive in others). Number of loops had negative coefficient in three data sets (full, C, android c) and was zero in
the others. Other interpretable features had positive or zero coefficients.
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