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Abstract—Embedding a high dimensional combinatorial ob-
ject like tokens in text or nodes in graphs into a lower dimensional 
Euclidean space is a form of (lossy) data compression. We 
will demonstrate a class of procedures to embed vertices of 
a (connected) graph into a low-dimensional Euclidean space. 
We explore two kinds of embedding, one node2vec, similar to 
word2vec, which deploys a shallow network and a recurrent 
network which remembers past moves and takes [sic] spatial 
correlations into an account We also explore the extent in which 
graph embedding preserves information and the practicality of 
using the information stored in a compressed form to discern 
meaningful patterns. With growth in their popularity, we too 
make an extensive use of the neural networks computational 
frameworks; we propose the usage of various neural network 
architectures to implement an encoder-decoder scheme to learn 
'hidden' features. Since training a network requires data, we 
describe various sampling techniques including novel methods to 
sample from a graph; one using a vertex cover and another is an 
Eulerian tour of a (possibly) modified graph. 

Index Terms—Graph Embedding ; Node2vec ; Encode-
Decoder ; Sampling ; Data Compression ; Vertex Cover ; Cluster 
Editing 

I. INTRODUCTION 

We assume the reader is familiar with graphs. In this con-
text graphs are undirected and possess no loops. In many ways 
graphs are peculiar in that they are simultaneously simple and 
complex. In fact, many simple-to-state problems are known 
to evade an easy solution. A demonstration of this fact is 
the notorious Four-Color Problem which after a century of 
struggles and failed 'proofs', a (genuine) proof was discovered 
(Appel & Haken in 1977 [1].) It is part of the folklore that the 
theory of satisfiability, (Knuth [2],) is often described in terms 
of graph-theoretic decision/search problems [3]. The NP-hard 
problems, those easily verifiable, but hard to solve are often 
stated in graph-theoretic terms. As of yet (the Summer of 
2022) it is not known whether a solution of any representative 
of the NP-complete class can be found in polynomial time. 
Donald Knuth expressed his frustration [2]; he says "Section 
7.1.1 discussed the embarrassing fact that nobody has ever 
been able to come up with an efficient algorithm to solve 
the general satisfiability problem..." Arguably, the domain of 
graphs is an endless source of NP-hard problem with hundreds 

belonging to the class NP-complete. Graph embedding strives 
to translate aspects of graph attributes into analytical problems, 
i.e., analysis in a finite dimensional Euclidean spaces. 

A. Graph Embedding Literature 

There are a few previous surveys of algorithms for graph 
embedding [4,5], some with emphasis on link prediction 
[6], biological applications [7], and convolution [8]. Other 
approaches for detecting change-points in time series of graphs 
include non-embedding methods that attempt to optimize 
criteria such as Minimum Description Length [9]. 

Recently, the use of random walks became popular. In 
particular the use of random walks for computing GNN [10]. 

N . LOSSLESS AND LOSSY COMPRESSION 

Classical representations of a graphs as a matrix are 
1) Adjacency matrix A = (auv) where 

J 1 if vertices u and v are connected 
flu" = \ o else. 

2) Incidence matrix B = (bve) where 

J 1 if v is an endpoint of e 
" e = \ 0 else. 

Either of those matrix representations are lossless as 
they preserve all the information. However, both are grossly 
inefficient because both matrices are generally sparse. If one 
is tolerant of information loss, then one might consider an 
approach which represents a graph G as a 'dense' matrix 
of lower order. Accordingly, an embedding is a mapping 
Qn —» R n x d which maps a graph of order n into an n x d 
matrix with d -C n: a lossy representation of order 0(n) rather 
than 0(n2). 

An autoencoder utilizes a neural networks, an encoder-
decoder architecture to produce the embedding. In recent 
years, various autoencoder techniques have become a staple of 
the study of unstructured data. For example, images, Hinton, 
et al. [11], text, Mikolos, et al., [12], source code, Alon, et al., 
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Figure 1: Node2vec feed-forward neural network architecture. 

[13], and social media Barr, et al., [14]. The dimension n x d 
of the vector space M n x d is the dimension of the embedding. 
It seems reasonable to aspire for an efficient embedding, to 
select d as small as possible while maintaining as much 
structural information about the underline graph as possible. 
In the spirit of The Moody Blues' 1970 Question of Balance, 
graph embedding strives to gain maximal efficiency using as 
few parameters as possible while minimizing information loss. 
In that sense, graph embedding falls into the category of 
heuristics. We use analytical procedures to represent a graph 
as a dense matrix of order O(n) using an encoder-decoder 
neural network architectures. 

Invariably, the extent to which graph embedding preserves 
information must be tested against some ground truth. We 
expect that matrix embedding of graphs to possess a certain 
measure of continuity: that if two graphs G and G' are similar 
(in some sense,) then so are their embedding, and conversely. 
We would expect that a matrix resulting from the embedding 
of a dense graph, say K n

l , is fundamentally different from the 
matrix resulting from a sparse graph, say a tree. In that sense, 
graph embedding heuristics are no different from any other 
data models where a model's performance is tested against a 
truth, often putative truth. 

To fix notation, let G = (V, E) be a graph with |V| = n 
the order of G and a labelling of the vertices, i.e., a mapping 
V —> {1,2, •• • ,n}; so we identify v 6 V with its label k 
where v —> k. Fix a labeling of the vertices of the graph. 

A ONE-HOT ENCODING of V is the mapping <j) : V —> 
{0,1}" with = (1,0,0, . . , 0), 4>{v2) = (0,1,0,0, . . . , 0) 
and in general <f>(vk) = (0,0,..., 0,1,0,..., 0) with 1 in the fcth 
spot and 0 elsewhere. 

We should mention that one-hot encoding of G as points 
in R™ do not suppose to be a meaningful representation of 
the graph: any two one-hot vectors are orthogonal, and the 

distance between any two is V2. 

H I . N O D E 2 V E C 

As the much-used meme suggests, n o d e 2 v e c is a class 
of algorithms resulting in a vector representation of the nodes 
of a graph. Keeping faithful to tradition and relying on the 
seminal work in [12] and [15], we represent a skip-node 
procedure. We consider two versions: a shallow feed-forward 
network S-skip-node, as well as variations thereof R-skip-node 
which implement recurrent networks. 

In a shallow feed-forward architecture, the network esti-
mates two matrices U e M.dXn and V e RnXd. In a trained 
network, the columns of U are the embedding: the first column 
of U is the embedding of v±, the second column of w2, etc. 

In a recurrent neural network (RNN) scheme, or more 
precisely long short-term memory (LSTM) network, three 
matrices are estimated, U € Rdx™ from input to the hidden 
layer, V e Rnxd from hidden to output, and W £ Rdxd from 
hidden to itself. The network estimates U, V, and W. Just like 
in the shallow feed-forward network framework, the columns 
of U are the embedding of the vertices of the graph. 

SKIP-NODE predicts the neighbors of a pivot node v. The 
skip-node produces a probability vector (pi,p2, • • • ,Pn) with 
Pj is the probability that vertex Vj is adjacent to the pivot node 

Both models involve a hyper-parameter d, d <C n, which 
is the size of the hidden layer; optimizing d requires empirical 
evidence. 

As noted above, the skip-node procedure predicts all 
vertices adjacent to a pivot vertex. For vertex as pivot, the 
training pair associated with Vk is the one-hot representation 
of Vk, x = (0 , . . . , 0 , 1 ,0 , . . . , 0), and the sum of all one-hot 
encoding of the neighbors of vk, i.e., y = vk{1) -| \-vk(mk) 
where deg{vk) = mk and Vk(j) are adjacent to 

is the complete graph on n vertices. 
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In other words y is a (0,l)-vector of weight m^, with 1 
in positions corresponding to labels of neighbors of v^. 

For example, say v\ is the pivot vertex and suppose for 
definiteness, that the neighbors of v\ are V2,V$, «4 and 
then for the pivot v\ we associate a training pair 

( ( 1 , 0 , 0 , 0 , 0 , . . . , 0 ) , ( 0 , 1 , 1 , 1 , 1 , 0 , 0 , . . . , 0 ) ) 

where vi is encoded as (1,0,0,0,0, . . . , 0). 
In general, if the neighbors of v are u, w, x, y,... then 

the training pairs are of the form 

(v , u + w + x + y + ...). 

A. Embedding with Recurrent Neural Networks (RNN) 

We may replicate skip-node using a recurrent neural 
network rather than a shallow feed-forward one. In practice, to 
help ensure convergence, a long short-term memory network 
(LSTM network) is used. RNN architecture consists of n 
dimensional inputs (n is the order of the graph), n dimensional 
output, d hidden nodes and three matrices of parameters. 
U e from input-to-hidden, V € ixd from hidden-
to-output, and W e Rdxd from hidden-to-hidden (See Fig 2). 
The goal is to estimate the parameter matrices U, V, and W. 
The embedding of vertex Vk the fcth column of XJ. 

IV . SAMPLING VERTICES FROM A GRAPH 

A set of training pairs {(Xi,yi),i = 1,2, ...,fc}, is an 
indispensable ingredient of machine learning. We propose 
several procedures to extract data. 

A. Simulating training pairs with a random walk 

A walk in a graph G is a sequence of vertices 
v1, v2, v3, ...,vm so that for each i = 1,2, ...,m — 1, the pairs 
vlvl+1 are edges of G. A random walk (RW) on a graph 
G is a [sic] random traversal of the vertices along the edges 
of the graph (See Fig. 3). A random walk is initialized at a 
'random' vertex v = v1 (selected uniformly) and proceed to 
move randomly to a neighboring vertex. The probability of a 
move is uniform; if, say, v has 4 neighbors, w,u,x,y, then 
the move to either has a probability 1/4. The random walk 
continues for a specified, predetermined number of moves. 
The number of moves q is a parameter controlled by the 
modeler. The random walk generates the training pairs, and 

so the sample size equals the number of moves. A realization 
of a random walk of size q is v1, v2, v3,..., v9 where vkvk+1 

is an edge, but the v? may not be distinct; in fact, we design 
the walk to be sufficiently long to ensure vertices of degree 
greater than 1 are likely to be revisited multiple times. 

A sample generated with a random walk is rather similar 
to bootstrapping a sample from data. Bootstrapping is a re-
sampling method introduced by B. Efron more than 40 years 
ago [16]. 

We walk the edges of the graph, giving all the neighbors 
of a vertex equal probability. Each (random) move gives rise to 
a training pair, as described earlier. The number of simulated 
moves must be larger than the number of vertices to ensure 
the entire graph has a good chance of being represented in 
the sample. A consequence of the procedure is that a training 
pair may appear multiple times in the sample or perhaps not 
appear at all. 

B. Simulating training pairs using Vertex Covers 

A vertex cover of a graph G = (V, E) is nothing but 
a set of vertices C C V such that every edge of G has at 
least one endpoint in C. As such, the adjacency lists of all 
the elements of C cover all the edges, i.e., it captures the 
graph information in its entirety. It follows that finding a small 
vertex cover, if any, allows us to reduce the overall graph 
representation. A corresponding embedding via our skip-node 
approach (described above) can save valuable space while 
achieving a lossy compression/embedding. 

Despite the NP-hardness of the Vertex Cover problem, re-
cent algorithms based on fixed-parameter tractability methods 
proved to be highly efficient in practice [17], and methods 
for using high performance computing platforms, including 
GPUs, can solve some of the most recalcitrant instances in 
seconds [18]—[23]. Therefore, depending on the computed size 
of the vertex cover, this method could significantly improve 
performance. However, in general, it can be noted that it will 
reduce the size of the edge list by a factor of two. 

C. Simulating training pairs with semi-Eulerian Walks 

The purpose of a random walk is to obtain a vector 
representation that covers as many vertices as possible in as 
few steps as possible, thus capturing information (about the 
graph.) 

Figure 2: Node2vec RNN architecture. 
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Figure 3: A (short) random walk (in red). 

An alternative approach to this (partial) covering is to try 
to capture all the information by a walk that simply visits all 
the edges. Of course, one cannot avoid edge repetition unless 
the graph is Eulerian. 

Our Semi-Eulerian Walk algorithm consists of (i) adding 
virtual edges between each pair of non-adjacent (but "close 
enough") odd-degree vertices to transform the input graph into 
an Eulerian graph and, (ii) visiting all the edges via an Eulerian 
walk of the (new) graph. The output "marks" the virtual edges 
via a special unique code. Such a mark marks a jump in the 
resulting vector. 

The number of added virtual edges is at most n/2. Thus 
our resulting walk has a length at most m + 3n/2 where m, 
is the number of edges in the input graph. 

V. IMPROVING THE RANDOM WORK USING CLUSTER EDITING 

In computing a random walk that covers the graph, it 
is beneficial to start the random walks from a number of 
well separated locations. These starting points can be chosen 
randomly, however ideally the are spread over the clusters of 
the graph. The CLUSTER EDITING problem provides a near ideal 
way to compute these subgraphs. CLUSTER EDITING partitions 
the vertices of a graph G = (V, E) such that after adding 
or removing a minimum number of edges this partitions 
V = C\,... ,CP into a union of disjoint cliques. 
Computing a random walk using Cluster Editing: 

1) Compute the cluster graph C i , . . . , Cp 
2) Compute a random walk starting from a vertex in each 

clique in the cluster graph with length of size \Ci\ + c 
i.e. N[si] + c in the cluster graph. 

3) If for some reason the edges of Ci are not well covered 
a second vertex in Ci can be covered. 

It is worth noting that, while computing an optimum 
cluster graph is NP-hard, practical FPT methods proved to be 
efficient in practice [14,24]—[26]. Moreover, the requirement to 
edit the graph into a disjoint union of cliques can sometimes be 
too restrictive. Other editing variants that relax this restriction 
can play an effective role in this context and might be worth 
exploring [27]-[29], 

V I . LEARNING FRAMEWORK 

We expand on the learning frameworks. 
The AUTO-ENCODER ARCHITECTURE is a shallow feed-

forward neural network. The embedding is a hidden layer with 
d nodes. 

In a complete analogy of skip-gram, the SKIP-NODE train-
ing pairs are (vk, -I 1- um) where m is the degree of v 
and a vertex Vk and Uj are one-hot encoding of corresponding 
vertices. 

The goal is to predict the neighbor's pivot vertex Vk- The 
prediction is in the form of a vector ( . P I , P 2 , • • • ,Pn) where 
pk > 0 and J2jPj = 1-

A. Shallow feed-forward architecture 

This simple architecture has an input of size n, a single 
hidden layer consisting of d nodes, and an output layer of n 
nodes. XJ is a d x n matrix of weights associated with the input-
to-hidden layer, and the matrix associated with the hidden-to-
output is an n x d matrix V. For example, see Fig. 1. 
The input-hidden activation is linear, i.e., Ux (matrix multipli-
cation,) and the hidden-output activation is sof tmax. In other 
words, for input vector xv, a (0,l)-vector of weight-1 we have 
output softmax(yf/a;„). To unravel, we have Uxv e 
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and VUxv € R", say VUx = (rur2,-,rn)T. The output 
therefore is 

so f tmax(^{7x v ) = - , 

(1) 
22J E X P ( R J ) ' 

The standard cost function for this problem is CROSS-
ENTROPY p(t], fi) = — Y^j Vj LOG(/^J) and for skip-node model, 
cross-entropy is p(v, softmax(VUxv)). To amplify, v is a 
one-hot pivot vector, with a corresponding vector the sum of 
the one-hot representations of the neighbors of v (or the (0,1) 
vector with l 's in positions corresponding to neighbors of v.) 

B. Bag-of-nodes 

In a complete analogy to the foregoing, the bag-of-nodes 
procedure predicts the nodes which are jointly adjacent to any 
subset of the nodes. Say, a bag of k nodes, vi,v2, • • • ,Vk, 
the bag-of-nodes procedure produces a probability vector 
(Pi,P2, • • • ,Pn) where pj is the probability that node vj is 
adjacent to v\,vz, • • •, v^. Training pairs consist of (x,y) 
where x is the sum of the one-hot vertices of the bag and 
y is the sum of the one-hot vertices adjacent to the bag. 

It should be clear that the data complexity of bag-of-nodes 
is far greater than that of skip-node. We believe that with the 
exception of graphs with density 0(n2), (density = number of 
edges divided by the number of nodes), bag-of-nodes is not a 
viable approach to embed a graph. 

C. Recurrent network 

We now describe a recurrent network approach to 
node2vec. We consider the setting mentioned above; graph 
G of order n, with vertex set {v\,V2,... ,vn}, each one-hot 
encoded and a set of training pairs. To amplify any spatial 
correlation, in a recurrent neural network (RNN), training pairs 
are fed one-by-one as they appear in the data. 

The simplest form of RNN involves three matrices U e 
Rdxn, V e K n x d , and W e Rdxd. As before, the embedding 
size d is a model's hyperparameter, representing the number 
of nodes in the hidden layer. Information flows from input to 
hidden as well as laterally, from hidden to hidden. 

To fix notation, we may label training pairs with a time 
stamp t, t = 1 ,2 ,3 , . . . , and so training pairs are labeled 
(a"t,Vt),t = 1 ,2 , . . . where for skip-node, yt is the sum of 
the one-hot nodes neighboring to xt. 

Training is defined recursively: 
BASE CASE. A training pair {x\, YI) is fetched; the hidden value 
h\ = WhhXi the network outputs 

s o f t m a x ( i y / 1 ? / / i i ) = s o f t m a x ( W h j / W a ; h X i ) . 

RECURSIVE STEP. Suppose (XI , J/I), . . . , (XT-i, J/T-I) were pro-
cessed and (x t , y t ) is fetched. The output is 

s o f t m a x ^ w A - i + WhyWxhXt-i). 

It's important to note that RNNs tend to suffer from the 
vanishing or exploding gradient problem, so the RNN model 
framework generally fails to converge. A better and more 
robust approach is the long short-term memory (LSTM) net-
works. To specify a model framework, one needs to explicitly 
describe all the computational nodes and the relations between 
those. This includes specifying data flow, activation functions, 
and any 'special purpose' gates required to enhance network 
robustness which guarantees convergence. 

VII . GRAPH MATRIX 

Consider an embedding of vertices V of G into 2 < 
d -C = n. With the ordering of V = {HI,• • •, vn} we 
construct a matrix Mq £ l " x ® where column j of Mq is the 
embedding of vertex Vj. 

"mi , i m i , 2 m i , 3 . . . m i , „ " 

m 2 , i m 2 , 2 rn 2 , 3 . . . m 2 , „ 

RR13,1 " I3 ,2 7713,3 • • • RN3JN 

MG= 

m d i 1 m d , i m d , 3 . . . 

In fact, Mq is a "fat and short" matrix; specifically, the idea 
of embedding to compress information means that d much 
smaller than n. One would expect that an effective d = d(n) 
lies somewhere between log(n) and y/n and a good choice 
function of d(n) is selected based on empirics. 

A. Graph vector 

Perhaps the goal of converting MQ into a 'low-
dimensional' vector without losing information is not attain-
able, but converting it into a vector while losing as little 
information as possible may be. A plausible approach in 
projecting the columns of MQ into a subspace of the column 
space of MQ. AS a matter of expediency, since a graph G is 
fixed, there's no need to signify it, and we write M for Mq-
Principle components is one possible approach. Consider the 
matrix MMT and an orthogonal 77 x 77 matrix U such that 
UT(XTX)U = diag(Ai, A2,..., A„) with Ai > A2 > . . .A„ > 
0. Write u1 ,u2, ...,un 6 R™ the columns of U. Fix some 
a > 0.9, say, and let 

, . f . . A H h Aj -1 k = mm <j<n: H2- > a >. 
V - Ai + • • • + A n - J 

Define the k principal components Mu1, ...,Muk <E R9 and 
the n x fc-matrix consisting of columns Mu1,..., Muk. 

B. An illustration. 

If G has 10,000 vertices and we embed G into R8 then 
we map G into a matrix M of order 8 x 10,000. Say three 
eigenvalues account for 91 percent of the variability, then M is 
further reduced to a 10,000 x 3 matrix, say M'. In other words, 
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we've reduced the representation of G from 10,0002 = 108 to 
30,000 = 3 x 104. Still, it's very high dimension. Is it possible 
to do better? To embed a graph with 10,000 nodes into a 20-
dimensional vector? Perhaps, but a different approach must be 
invented. 

C. Embedding of subgraphs 

The idea is this: Consider a graph decomposition V(G) = 
y(Gi) U V(G2) u ... U V(Gq) where Gj is a dense subgraph 
and V(Gj) is the vertex set of Gj. Consider an embedding 
of G into Mq G M.DXN as described above. Associate a 
vector XQj with a component Gj by averaging the embedded 
vertex vectors of V(Gj). This results in q vectors, each of 
dimensionality d. 

D. Lowering the complexity: partitioning into dense sub-
graphs 

We repeat & expand the idea in the introductory re-
marks. Suppose G is partitioned into dense subgraph, this 
means V is partitioned into a disjoint collection of vertex 
set Vi, V2,..., Vq, q > 1, with the induced graphs G\Vj\, 
subgraphs of G on a vertex set Vj dense, say clique. 

Consider node2vec embedding of G into say, dxn matrix 
M = Mq. NOW M can be further reduced by taking the 
average of the embedded vectors of group Vi, —r E i ' x(vj). 

|Vi | 
For every j = 1,2,... ,q, if \Vj\ = lj, consider the average 

= jj^j E13' x(lj) e 
This results in q vectors a\, a^,..., aq, each of order d. 

The graph G is then encoded by a d x q matrix. Since, in 
general, q < n, this results in substantially more economical 
compression than node2vec. 

This is in fact an embedding of the QUOTIENT GRAPH 

modulo ~ where u ~ v if u and v belong to the same part 
(clique.) 

V O L THINGS TO INVESTIGATE 

Our aim is to investigate the embedding; specifically, 
to investigate whether the proposed embedding sufficiently 
preserves the information of the underline graph. 

A few things we propose to investigate: 
1) How graphical distance between any two vertices trans-

late into corresponding Euclidean distance between their 
embedding? 

2) Invariance under relabeling; whether changing the label-
ing changes the embedding. 

3) Feasibility to reconstructing a graph from its embedding. 
4) How small perturbation affects embedding? 
5) Optimizing 'd\ the dimensionality of the embedding. 
6) Refining encoder-decoder architecture. 
7) Optimizing the generation of training pairs. 
8) How embedding can be integrated in making distinctions 

and/or answering a decision (yes/no) problems? 

I X . CONCLUSION 

We have demonstrated how vertices of graph are mapped 
to a Euclidean space Md with 2 < d <C n = |V(G) resulting 
in a dxn matrix that represents the graph, and we proposed 
to study the workflow of embedding correlation clustering and 
aggregating vertex vectors by clusters which result in a dxk 
matrix (k = number of clusters), and examine how graphical 
attributes are preserved. 

A related approach, for potential future work, would the 
use of graph mapping via dimensionality reduction, which was 
proposed in [30,31] for graph compression. 

X . APPLICATION 

We propose using the data sets mentioned in [9], 
Ohio crime incidents, https://data.cincinnati-oh.gov/safety/ 
PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf, and 

California temperature, https://prism.oregonstate.edu/ 
explorer/map.php, which uses the PRISM model [32]. 

There are several items to address but all involve a 
sequence of graphs (networks) which represent temporal con-
figurations. The idea is to use economical graph embedding 
to study the following. 

1) Investigate a sequential patterns "time series of graphs". 
2) Identify outliers in the sequence. 
3) Investigate trending. 
4) Investigate relation between graph parameters (say, spec-

tra, connectivity, etc.) and embedding. 
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