
Graph Embedding: A Methodological Survey
Joseph R. Ban-

Mi Lab, Acronis SCS,
Scottsdale, Arizona, USA

barr.jr@ gmail.com

Peter Shaw
Oujiang Laboritory,

Wenzhou, Zhejiang, China
petershaw@ojlab.ac.cn

Faisal N. Abu-Khzam
Lebanese American University

Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

Tyler Thatcher
MI Lab, Acronis SCS,

Scottsdale, Arizona, USA
tyler.thatcher@acronisscs.com

Toby Dylan Hocking
Northern Arizona University

Flagstaff, Arizona, United States of America
toby.hocking@nau.edu

Abstract—Embedding a high dimensional combinatorial ob-
ject like tokens in text or nodes in graphs into a lower dimensional
Euclidean space is a form of (lossy) data compression. We
will demonstrate a class of procedures to embed vertices of
a (connected) graph into a low-dimensional Euclidean space.
We explore two kinds of embedding, one node2vec, similar to
word2vec, which deploys a shallow network and a recurrent
network which remembers past moves and takes [sic] spatial
correlations into an account We also explore the extent in which
graph embedding preserves information and the practicality of
using the information stored in a compressed form to discern
meaningful patterns. With growth in their popularity, we too
make an extensive use of the neural networks computational
frameworks; we propose the usage of various neural network
architectures to implement an encoder-decoder scheme to learn
'hidden' features. Since training a network requires data, we
describe various sampling techniques including novel methods to
sample from a graph; one using a vertex cover and another is an
Eulerian tour of a (possibly) modified graph.

Index Terms—Graph Embedding ; Node2vec ; Encode-
Decoder ; Sampling ; Data Compression ; Vertex Cover ; Cluster
Editing

I. INTRODUCTION

We assume the reader is familiar with graphs. In this con-
text graphs are undirected and possess no loops. In many ways
graphs are peculiar in that they are simultaneously simple and
complex. In fact, many simple-to-state problems are known
to evade an easy solution. A demonstration of this fact is
the notorious Four-Color Problem which after a century of
struggles and failed 'proofs', a (genuine) proof was discovered
(Appel & Haken in 1977 [1].) It is part of the folklore that the
theory of satisfiability, (Knuth [2],) is often described in terms
of graph-theoretic decision/search problems [3]. The NP-hard
problems, those easily verifiable, but hard to solve are often
stated in graph-theoretic terms. As of yet (the Summer of
2022) it is not known whether a solution of any representative
of the NP-complete class can be found in polynomial time.
Donald Knuth expressed his frustration [2]; he says "Section
7.1.1 discussed the embarrassing fact that nobody has ever
been able to come up with an efficient algorithm to solve
the general satisfiability problem..." Arguably, the domain of
graphs is an endless source of NP-hard problem with hundreds

belonging to the class NP-complete. Graph embedding strives
to translate aspects of graph attributes into analytical problems,
i.e., analysis in a finite dimensional Euclidean spaces.

A. Graph Embedding Literature

There are a few previous surveys of algorithms for graph
embedding [4,5], some with emphasis on link prediction
[6], biological applications [7], and convolution [8]. Other
approaches for detecting change-points in time series of graphs
include non-embedding methods that attempt to optimize
criteria such as Minimum Description Length [9].

Recently, the use of random walks became popular. In
particular the use of random walks for computing GNN [10].

N . LOSSLESS AND LOSSY COMPRESSION

Classical representations of a graphs as a matrix are
1) Adjacency matrix A = (auv) where

J 1 if vertices u and v are connected
flu" = \ o else.

2) Incidence matrix B = (bve) where

J 1 if v is an endpoint of e
" e = \ 0 else.

Either of those matrix representations are lossless as
they preserve all the information. However, both are grossly
inefficient because both matrices are generally sparse. If one
is tolerant of information loss, then one might consider an
approach which represents a graph G as a 'dense' matrix
of lower order. Accordingly, an embedding is a mapping
Qn —» R n x d which maps a graph of order n into an n x d
matrix with d -C n: a lossy representation of order 0(n) rather
than 0(n2).

An autoencoder utilizes a neural networks, an encoder-
decoder architecture to produce the embedding. In recent
years, various autoencoder techniques have become a staple of
the study of unstructured data. For example, images, Hinton,
et al. [11], text, Mikolos, et al., [12], source code, Alon, et al.,

2022 Fourth International Conference on Transdisciplinary AI (TransAI)

978-1-6654-7184-8/22/$31.00 ©2022 IEEE
DOI 10.1109/TransAI54797.2022.00031

20
22

 F
ou

rth
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ra

ns
di

sc
ip

lin
ar

y
A

I (
Tr

an
sA

I)
 |

97
8-

1-
66

54
-7

18
4-

8/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
Tr

an
sA

I5
47

97
.2

02
2.

00
03

1

142

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Node2vec feed-forward neural network architecture.

[13], and social media Barr, et al., [14]. The dimension n x d
of the vector space M n x d is the dimension of the embedding.
It seems reasonable to aspire for an efficient embedding, to
select d as small as possible while maintaining as much
structural information about the underline graph as possible.
In the spirit of The Moody Blues' 1970 Question of Balance,
graph embedding strives to gain maximal efficiency using as
few parameters as possible while minimizing information loss.
In that sense, graph embedding falls into the category of
heuristics. We use analytical procedures to represent a graph
as a dense matrix of order O(n) using an encoder-decoder
neural network architectures.

Invariably, the extent to which graph embedding preserves
information must be tested against some ground truth. We
expect that matrix embedding of graphs to possess a certain
measure of continuity: that if two graphs G and G' are similar
(in some sense,) then so are their embedding, and conversely.
We would expect that a matrix resulting from the embedding
of a dense graph, say K n

l , is fundamentally different from the
matrix resulting from a sparse graph, say a tree. In that sense,
graph embedding heuristics are no different from any other
data models where a model's performance is tested against a
truth, often putative truth.

To fix notation, let G = (V, E) be a graph with |V| = n
the order of G and a labelling of the vertices, i.e., a mapping
V —> {1,2, •• • ,n}; so we identify v 6 V with its label k
where v —> k. Fix a labeling of the vertices of the graph.

A ONE-HOT ENCODING of V is the mapping <j) : V —>
{0,1}" with = (1,0,0, . . , 0), 4>{v2) = (0,1,0,0, . . . , 0)
and in general <f>(vk) = (0,0,..., 0,1,0,..., 0) with 1 in the fcth
spot and 0 elsewhere.

We should mention that one-hot encoding of G as points
in R™ do not suppose to be a meaningful representation of
the graph: any two one-hot vectors are orthogonal, and the

distance between any two is V2.

H I . N O D E 2 V E C

As the much-used meme suggests, n o d e 2 v e c is a class
of algorithms resulting in a vector representation of the nodes
of a graph. Keeping faithful to tradition and relying on the
seminal work in [12] and [15], we represent a skip-node
procedure. We consider two versions: a shallow feed-forward
network S-skip-node, as well as variations thereof R-skip-node
which implement recurrent networks.

In a shallow feed-forward architecture, the network esti-
mates two matrices U e M.dXn and V e RnXd. In a trained
network, the columns of U are the embedding: the first column
of U is the embedding of v±, the second column of w2, etc.

In a recurrent neural network (RNN) scheme, or more
precisely long short-term memory (LSTM) network, three
matrices are estimated, U € Rdx™ from input to the hidden
layer, V e Rnxd from hidden to output, and W £ Rdxd from
hidden to itself. The network estimates U, V, and W. Just like
in the shallow feed-forward network framework, the columns
of U are the embedding of the vertices of the graph.

SKIP-NODE predicts the neighbors of a pivot node v. The
skip-node produces a probability vector (pi,p2, • • • ,Pn) with
Pj is the probability that vertex Vj is adjacent to the pivot node

Both models involve a hyper-parameter d, d <C n, which
is the size of the hidden layer; optimizing d requires empirical
evidence.

As noted above, the skip-node procedure predicts all
vertices adjacent to a pivot vertex. For vertex as pivot, the
training pair associated with Vk is the one-hot representation
of Vk, x = (0 , . . . , 0 , 1 ,0 , . . . , 0), and the sum of all one-hot
encoding of the neighbors of vk, i.e., y = vk{1) -| \-vk(mk)
where deg{vk) = mk and Vk(j) are adjacent to

is the complete graph on n vertices.

143

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

In other words y is a (0,l)-vector of weight m^, with 1
in positions corresponding to labels of neighbors of v^.

For example, say v\ is the pivot vertex and suppose for
definiteness, that the neighbors of v\ are V2,V$, «4 and
then for the pivot v\ we associate a training pair

((1 , 0 , 0 , 0 , 0 , . . . , 0) , (0 , 1 , 1 , 1 , 1 , 0 , 0 , . . . , 0))

where vi is encoded as (1,0,0,0,0, . . . , 0).
In general, if the neighbors of v are u, w, x, y,... then

the training pairs are of the form

(v , u + w + x + y + ...).

A. Embedding with Recurrent Neural Networks (RNN)

We may replicate skip-node using a recurrent neural
network rather than a shallow feed-forward one. In practice, to
help ensure convergence, a long short-term memory network
(LSTM network) is used. RNN architecture consists of n
dimensional inputs (n is the order of the graph), n dimensional
output, d hidden nodes and three matrices of parameters.
U e from input-to-hidden, V € ixd from hidden-
to-output, and W e Rdxd from hidden-to-hidden (See Fig 2).
The goal is to estimate the parameter matrices U, V, and W.
The embedding of vertex Vk the fcth column of XJ.

IV . SAMPLING VERTICES FROM A GRAPH

A set of training pairs {(Xi,yi),i = 1,2, ...,fc}, is an
indispensable ingredient of machine learning. We propose
several procedures to extract data.

A. Simulating training pairs with a random walk

A walk in a graph G is a sequence of vertices
v1, v2, v3, ...,vm so that for each i = 1,2, ...,m — 1, the pairs
vlvl+1 are edges of G. A random walk (RW) on a graph
G is a [sic] random traversal of the vertices along the edges
of the graph (See Fig. 3). A random walk is initialized at a
'random' vertex v = v1 (selected uniformly) and proceed to
move randomly to a neighboring vertex. The probability of a
move is uniform; if, say, v has 4 neighbors, w,u,x,y, then
the move to either has a probability 1/4. The random walk
continues for a specified, predetermined number of moves.
The number of moves q is a parameter controlled by the
modeler. The random walk generates the training pairs, and

so the sample size equals the number of moves. A realization
of a random walk of size q is v1, v2, v3,..., v9 where vkvk+1

is an edge, but the v? may not be distinct; in fact, we design
the walk to be sufficiently long to ensure vertices of degree
greater than 1 are likely to be revisited multiple times.

A sample generated with a random walk is rather similar
to bootstrapping a sample from data. Bootstrapping is a re-
sampling method introduced by B. Efron more than 40 years
ago [16].

We walk the edges of the graph, giving all the neighbors
of a vertex equal probability. Each (random) move gives rise to
a training pair, as described earlier. The number of simulated
moves must be larger than the number of vertices to ensure
the entire graph has a good chance of being represented in
the sample. A consequence of the procedure is that a training
pair may appear multiple times in the sample or perhaps not
appear at all.

B. Simulating training pairs using Vertex Covers

A vertex cover of a graph G = (V, E) is nothing but
a set of vertices C C V such that every edge of G has at
least one endpoint in C. As such, the adjacency lists of all
the elements of C cover all the edges, i.e., it captures the
graph information in its entirety. It follows that finding a small
vertex cover, if any, allows us to reduce the overall graph
representation. A corresponding embedding via our skip-node
approach (described above) can save valuable space while
achieving a lossy compression/embedding.

Despite the NP-hardness of the Vertex Cover problem, re-
cent algorithms based on fixed-parameter tractability methods
proved to be highly efficient in practice [17], and methods
for using high performance computing platforms, including
GPUs, can solve some of the most recalcitrant instances in
seconds [18]—[23]. Therefore, depending on the computed size
of the vertex cover, this method could significantly improve
performance. However, in general, it can be noted that it will
reduce the size of the edge list by a factor of two.

C. Simulating training pairs with semi-Eulerian Walks

The purpose of a random walk is to obtain a vector
representation that covers as many vertices as possible in as
few steps as possible, thus capturing information (about the
graph.)

Figure 2: Node2vec RNN architecture.

144

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

Figure 3: A (short) random walk (in red).

An alternative approach to this (partial) covering is to try
to capture all the information by a walk that simply visits all
the edges. Of course, one cannot avoid edge repetition unless
the graph is Eulerian.

Our Semi-Eulerian Walk algorithm consists of (i) adding
virtual edges between each pair of non-adjacent (but "close
enough") odd-degree vertices to transform the input graph into
an Eulerian graph and, (ii) visiting all the edges via an Eulerian
walk of the (new) graph. The output "marks" the virtual edges
via a special unique code. Such a mark marks a jump in the
resulting vector.

The number of added virtual edges is at most n/2. Thus
our resulting walk has a length at most m + 3n/2 where m,
is the number of edges in the input graph.

V. IMPROVING THE RANDOM WORK USING CLUSTER EDITING

In computing a random walk that covers the graph, it
is beneficial to start the random walks from a number of
well separated locations. These starting points can be chosen
randomly, however ideally the are spread over the clusters of
the graph. The CLUSTER EDITING problem provides a near ideal
way to compute these subgraphs. CLUSTER EDITING partitions
the vertices of a graph G = (V, E) such that after adding
or removing a minimum number of edges this partitions
V = C\,... ,CP into a union of disjoint cliques.
Computing a random walk using Cluster Editing:

1) Compute the cluster graph C i , . . . , Cp
2) Compute a random walk starting from a vertex in each

clique in the cluster graph with length of size \Ci\ + c
i.e. N[si] + c in the cluster graph.

3) If for some reason the edges of Ci are not well covered
a second vertex in Ci can be covered.

It is worth noting that, while computing an optimum
cluster graph is NP-hard, practical FPT methods proved to be
efficient in practice [14,24]—[26]. Moreover, the requirement to
edit the graph into a disjoint union of cliques can sometimes be
too restrictive. Other editing variants that relax this restriction
can play an effective role in this context and might be worth
exploring [27]-[29],

V I . LEARNING FRAMEWORK

We expand on the learning frameworks.
The AUTO-ENCODER ARCHITECTURE is a shallow feed-

forward neural network. The embedding is a hidden layer with
d nodes.

In a complete analogy of skip-gram, the SKIP-NODE train-
ing pairs are (vk, -I 1- um) where m is the degree of v
and a vertex Vk and Uj are one-hot encoding of corresponding
vertices.

The goal is to predict the neighbor's pivot vertex Vk- The
prediction is in the form of a vector (. P I , P 2 , • • • ,Pn) where
pk > 0 and J2jPj = 1-

A. Shallow feed-forward architecture

This simple architecture has an input of size n, a single
hidden layer consisting of d nodes, and an output layer of n
nodes. XJ is a d x n matrix of weights associated with the input-
to-hidden layer, and the matrix associated with the hidden-to-
output is an n x d matrix V. For example, see Fig. 1.
The input-hidden activation is linear, i.e., Ux (matrix multipli-
cation,) and the hidden-output activation is sof tmax. In other
words, for input vector xv, a (0,l)-vector of weight-1 we have
output softmax(yf/a;„). To unravel, we have Uxv e

145

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

and VUxv € R", say VUx = (rur2,-,rn)T. The output
therefore is

so f tmax(^{7x v) = - ,

(1)
22J E X P (R J) '

The standard cost function for this problem is CROSS-
ENTROPY p(t], fi) = — Y^j Vj LOG(/^J) and for skip-node model,
cross-entropy is p(v, softmax(VUxv)). To amplify, v is a
one-hot pivot vector, with a corresponding vector the sum of
the one-hot representations of the neighbors of v (or the (0,1)
vector with l 's in positions corresponding to neighbors of v.)

B. Bag-of-nodes

In a complete analogy to the foregoing, the bag-of-nodes
procedure predicts the nodes which are jointly adjacent to any
subset of the nodes. Say, a bag of k nodes, vi,v2, • • • ,Vk,
the bag-of-nodes procedure produces a probability vector
(Pi,P2, • • • ,Pn) where pj is the probability that node vj is
adjacent to v\,vz, • • •, v^. Training pairs consist of (x,y)
where x is the sum of the one-hot vertices of the bag and
y is the sum of the one-hot vertices adjacent to the bag.

It should be clear that the data complexity of bag-of-nodes
is far greater than that of skip-node. We believe that with the
exception of graphs with density 0(n2), (density = number of
edges divided by the number of nodes), bag-of-nodes is not a
viable approach to embed a graph.

C. Recurrent network

We now describe a recurrent network approach to
node2vec. We consider the setting mentioned above; graph
G of order n, with vertex set {v\,V2,... ,vn}, each one-hot
encoded and a set of training pairs. To amplify any spatial
correlation, in a recurrent neural network (RNN), training pairs
are fed one-by-one as they appear in the data.

The simplest form of RNN involves three matrices U e
Rdxn, V e K n x d , and W e Rdxd. As before, the embedding
size d is a model's hyperparameter, representing the number
of nodes in the hidden layer. Information flows from input to
hidden as well as laterally, from hidden to hidden.

To fix notation, we may label training pairs with a time
stamp t, t = 1 ,2 ,3 , . . . , and so training pairs are labeled
(a"t,Vt),t = 1 ,2 , . . . where for skip-node, yt is the sum of
the one-hot nodes neighboring to xt.

Training is defined recursively:
BASE CASE. A training pair {x\, YI) is fetched; the hidden value
h\ = WhhXi the network outputs

s o f t m a x (i y / 1 ? / / i i) = s o f t m a x (W h j / W a ; h X i) .

RECURSIVE STEP. Suppose (XI , J/I), . . . , (XT-i, J/T-I) were pro-
cessed and (x t , y t) is fetched. The output is

s o f t m a x ^ w A - i + WhyWxhXt-i).

It's important to note that RNNs tend to suffer from the
vanishing or exploding gradient problem, so the RNN model
framework generally fails to converge. A better and more
robust approach is the long short-term memory (LSTM) net-
works. To specify a model framework, one needs to explicitly
describe all the computational nodes and the relations between
those. This includes specifying data flow, activation functions,
and any 'special purpose' gates required to enhance network
robustness which guarantees convergence.

VII . GRAPH MATRIX

Consider an embedding of vertices V of G into 2 <
d -C = n. With the ordering of V = {HI,• • •, vn} we
construct a matrix Mq £ l " x ® where column j of Mq is the
embedding of vertex Vj.

"mi , i m i , 2 m i , 3 . . . m i , „ "

m 2 , i m 2 , 2 rn 2 , 3 . . . m 2 , „

RR13,1 " I3 ,2 7713,3 • • • RN3JN

MG=

m d i 1 m d , i m d , 3 . . .

In fact, Mq is a "fat and short" matrix; specifically, the idea
of embedding to compress information means that d much
smaller than n. One would expect that an effective d = d(n)
lies somewhere between log(n) and y/n and a good choice
function of d(n) is selected based on empirics.

A. Graph vector

Perhaps the goal of converting MQ into a 'low-
dimensional' vector without losing information is not attain-
able, but converting it into a vector while losing as little
information as possible may be. A plausible approach in
projecting the columns of MQ into a subspace of the column
space of MQ. AS a matter of expediency, since a graph G is
fixed, there's no need to signify it, and we write M for Mq-
Principle components is one possible approach. Consider the
matrix MMT and an orthogonal 77 x 77 matrix U such that
UT(XTX)U = diag(Ai, A2,..., A„) with Ai > A2 > . . .A„ >
0. Write u1 ,u2, ...,un 6 R™ the columns of U. Fix some
a > 0.9, say, and let

, . f . . A H h Aj -1 k = mm <j<n: H2- > a >.
V - Ai + • • • + A n - J

Define the k principal components Mu1, ...,Muk <E R9 and
the n x fc-matrix consisting of columns Mu1,..., Muk.

B. An illustration.

If G has 10,000 vertices and we embed G into R8 then
we map G into a matrix M of order 8 x 10,000. Say three
eigenvalues account for 91 percent of the variability, then M is
further reduced to a 10,000 x 3 matrix, say M'. In other words,

146

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

we've reduced the representation of G from 10,0002 = 108 to
30,000 = 3 x 104. Still, it's very high dimension. Is it possible
to do better? To embed a graph with 10,000 nodes into a 20-
dimensional vector? Perhaps, but a different approach must be
invented.

C. Embedding of subgraphs

The idea is this: Consider a graph decomposition V(G) =
y(Gi) U V(G2) u ... U V(Gq) where Gj is a dense subgraph
and V(Gj) is the vertex set of Gj. Consider an embedding
of G into Mq G M.DXN as described above. Associate a
vector XQj with a component Gj by averaging the embedded
vertex vectors of V(Gj). This results in q vectors, each of
dimensionality d.

D. Lowering the complexity: partitioning into dense sub-
graphs

We repeat & expand the idea in the introductory re-
marks. Suppose G is partitioned into dense subgraph, this
means V is partitioned into a disjoint collection of vertex
set Vi, V2,..., Vq, q > 1, with the induced graphs G\Vj\,
subgraphs of G on a vertex set Vj dense, say clique.

Consider node2vec embedding of G into say, dxn matrix
M = Mq. NOW M can be further reduced by taking the
average of the embedded vectors of group Vi, —r E i ' x(vj).

|Vi |
For every j = 1,2,... ,q, if \Vj\ = lj, consider the average

= jj^j E13' x(lj) e
This results in q vectors a\, a^,..., aq, each of order d.

The graph G is then encoded by a d x q matrix. Since, in
general, q < n, this results in substantially more economical
compression than node2vec.

This is in fact an embedding of the QUOTIENT GRAPH

modulo ~ where u ~ v if u and v belong to the same part
(clique.)

V O L THINGS TO INVESTIGATE

Our aim is to investigate the embedding; specifically,
to investigate whether the proposed embedding sufficiently
preserves the information of the underline graph.

A few things we propose to investigate:
1) How graphical distance between any two vertices trans-

late into corresponding Euclidean distance between their
embedding?

2) Invariance under relabeling; whether changing the label-
ing changes the embedding.

3) Feasibility to reconstructing a graph from its embedding.
4) How small perturbation affects embedding?
5) Optimizing 'd\ the dimensionality of the embedding.
6) Refining encoder-decoder architecture.
7) Optimizing the generation of training pairs.
8) How embedding can be integrated in making distinctions

and/or answering a decision (yes/no) problems?

I X . CONCLUSION

We have demonstrated how vertices of graph are mapped
to a Euclidean space Md with 2 < d <C n = |V(G) resulting
in a dxn matrix that represents the graph, and we proposed
to study the workflow of embedding correlation clustering and
aggregating vertex vectors by clusters which result in a dxk
matrix (k = number of clusters), and examine how graphical
attributes are preserved.

A related approach, for potential future work, would the
use of graph mapping via dimensionality reduction, which was
proposed in [30,31] for graph compression.

X . APPLICATION

We propose using the data sets mentioned in [9],
Ohio crime incidents, https://data.cincinnati-oh.gov/safety/
PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf, and

California temperature, https://prism.oregonstate.edu/
explorer/map.php, which uses the PRISM model [32].

There are several items to address but all involve a
sequence of graphs (networks) which represent temporal con-
figurations. The idea is to use economical graph embedding
to study the following.

1) Investigate a sequential patterns "time series of graphs".
2) Identify outliers in the sequence.
3) Investigate trending.
4) Investigate relation between graph parameters (say, spec-

tra, connectivity, etc.) and embedding.

X I . ACKNOWLEDGEMENTS

Joseph Barr was supported by Acronis SCS and was
greatly assisted by Acronis (Singapore.) Special thanks to
Ms. Katerina Archangorodskaja of Acronis for her valuable
suggestions and encouragements.

Peter Shaw was supported in part by the Oujiang Lab
China's (Zhejiang Lab for Regenerative Medicine, Vision and
Brain Health) startup fund.

REFERENCES

[1] K. Appel and W. Haken, "Every planar map is four colorable," Illinois
Journal of Mathematics, vol. 3, p. 429^90, 1977.

[2] D. Knuth, Art of Computer Programming, The Satisfiability, Volume 4,
Fascicle 6. Addison-Wesley, 2015.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W H Freeman and Co., 1979.

[4] P. Goyal and E. Ferrara, "Graph embedding techniques, applications,
and performance: A survey," arXiv preprint arXiv:1705.02801, 2017.

[5] H. Cai, V. W. Zheng, and K. C.-C. Chang, "A comprehensive survey
of graph embedding: Problems, techniques, and applications," IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616-1637, 2018.

[6] M. Wang, L. Qiu, and X. Wang, "A survey on knowledge graph
embeddings for link prediction," Symmetry, vol. 13, no. 3, p. 485, 2021.

[7] S. K. Mohamed, A. Nounu, and V. Novacek, "Biological applications
of knowledge graph embedding models," Briefings in bioinformatics,
vol. 22, no. 2, pp. 1679-1693, 2021.

[8] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, "Graph convolutional
networks: a comprehensive review," Computational Social Networks,
vol. 6, no. 1, pp. 1-23, 2019.

147

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

[9] C. Xu and T. C. M. Lee, "Change point detection and node clustering for
time series of graphs," IEEE Transactions on Signal Processing, vol. 70,
pp. 3165-3180, 2022.

[10] J. Callut, K. Franfoisse, M. Saerens, and P. Dupont, "Classification in
graphs using discriminative random walks," in International Workshop
on Mining and Learning with Graphs, vol. 7. Citeseer, 2008.

[11] G. Hinton, A. Krizhevsky, and S. Wang, "Transforming auto-encoders,"
in In International Conference on Artificial Neural Networks. Springer,
2011, pp. 44-51.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of
word representations in vector space," ArXiv, 2013.

[13] ASTMiner, https://github.com/JetBrains-Research/astminer.
[14] J. R. Barr, P. Shaw, F. N. Abu-Khzam, and J. Chen, "Combinatorial text

classification: the effect of multi-parameterized correlation clustering,"
in 2019 First International Conference on Graph Computing (GC). Los
Alamitos, CA, USA: IEEE Computer Society, sep 2019, pp. 29-36.

[15] M. L. Soutner D., "Application of lstm neural networks in language
modelling." Lecture Notes in Computer Science, vol. 8082, 2013.

[16] B. Efron, "Bootstrap methods: Another look at the jackknife," Ann.
Statist, vol. 7, no. 1, 1979.

[17] F. N. Abu-Khzam, M. A. Langston, A. E. Mouawad, and C. P. Nolan,
"A hybrid graph representation for recursive backtracking algorithms,"
in Frontiers in Algorithmics, 4th International Workshop, FAW 2010,
Wuhan, China, August 11-13, 2010. Proceedings, ser. Lecture Notes in
Computer Science, D. Lee, D. Z. Chen, and S. Ying, Eds., vol. 6213.
Springer, 2010, pp. 136-147.

[18] F. N. Abu-Khzam, M. A. Langston, and P. Shanbhag, "Scalable parallel
algorithms for difficult combinatorial problems: A case study in opti-
mization," in Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Networks, Innsbruck, Austria,
February 17-19, 2004, M. H. Hamza, Ed. IASTED/ACTA Press, 2004,
pp. 649-654.

[19] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons,
"Scalable parallel algorithms for FPT problems," Algorithmica,
vol. 45, no. 3, pp. 269-284, 2006. [Online]. Available: https:
//doi.org/10.1007/s00453-006-1214-1

[20] F. N. Abu-Khzam, K. Daudjee, A. E. Mouawad, and N. Nishimura,
"On scalable parallel recursive backtracking," J. Parallel Distributed
Comput., vol. 84, pp. 65-75, 2015. [Online], Available: https:
//doi.org/10.1016/j.jpdc.2015.07.006

[21] T. Akiba and Y. Iwata, "Branch-and-reduce exponential/fpt algorithms
in practice: A case study of vertex cover," Theoretical Computer
Science, vol. 609, pp. 211-225, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S030439751500852X

[22] F. N. Abu-Khzam, D. Kim, M. PetTy, K. Wang, and P. Shaw, "Ac-
celerating vertex cover optimization on a gpu architecture," in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 2018, pp. 616-625.

[23] P. Yamout, K. Barada, A. Jaljuli, A. E. Mouawad, and I. E. Hajj,
"Parallel vertex cover algorithms on gpus," in 2022 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2022, Lyon,
France, May 30 - June 3, 2022. IEEE, 2022, pp. 201-211. [Online].
Available: https://doi.org/10.1109/IPDPS53621.2022.00028

[24] F. N. Abu-Khzam, "On the complexity of multi-parameterized cluster
editing," Journal of Discrete Algorithms, vol. 45, pp. 26-34, 2017.

[25] P. Shaw, J. R. Barr, and F. N. Abu-Khzam, "Anomaly detection
via correlation clustering," in 16th IEEE International Conference
on Semantic Computing, ICSC 2022, Laguna Hills, CA, USA,
January 26-28, 2022. IEEE, 2022, pp. 307-313. [Online]. Available:
https://doi.org/10.1109/ICSC52841.2022.00057

[26] J. R. Barr, P. Shaw, F. N. Abu-Khzam, T. Thatcher, and S. Yu,
"Vulnerability rating of source code with token embedding and
combinatorial algorithms," Int. J. Semantic Comput., vol. 14,
no. 4, pp. 501-516, 2020. [Online]. Available: https://doi.org/10.1142/
S1793351X20500087

[27] F. N. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw,
"Cluster editing with vertex splitting," in Combinatorial Optimization
- 5th International Symposium, ISCO 2018, Marrakesh, Morocco,
April 11-13, 2018, Revised Selected Papers, ser. Lecture Notes
in Computer Science, J. Lee, G. Rinaldi, and A. R. Mahjoub,
Eds., vol. 10856. Springer, 2018, pp. 1-13. [Online]. Available:
https://doi.org/10.1007/978-3-319-96151-4_l

[28] F. N. Abu-Khzam, N. Makarem, and M. Shehab, "An improved
fixed-parameter algorithm for 2-club cluster edge deletion," CoRR, vol.

abs/2107.01133, 2021. [Online]. Available: https://arxiv.org/abs/2107.
01133

[29] F. N. Abu-Khzam, J. R. BatT, A. Fakhereldine, and P. Shaw, "A
greedy heuristic for cluster editing with vertex splitting," in 2021 4th
International Conference on Artificial Intelligence for Industries (AI4I).
IEEE, 2021, pp. 38-41.

[30] F. N. Abu-Khzam and R. H. Mouawi, "Concise fuzzy representation
of big graphs: a dimensionality reduction approach," CoRR, vol.
abs/1803.03114, 2018. [Online]. Available: http://arxiv.org/abs/1803.
03114

[31] F. N. Abu-Khzam, A. H. Ahmad, and R. H. Mouawi, "Concise fuzzy
representation of big graphs: A dimensionality reduction approach,"
in Data Compression Conference, DCC 2020, Snowbird, UT, USA,
March 24-27, 2020, A. Bilgin, M. W. Marcellin, J. Serra-Sagrista,
and J. A. Storer, Eds. IEEE, 2020, p. 356. [Online]. Available:
https://doi.org/10.1109/DCC47342.2020.00056

[32] C. Daly, R. P. Neilson, and D. L. Phillips, "A statistical-topographic
model for mapping climatological precipitation over mountainous ter-
rain," Journal of Applied Meteorology and Climatology, vol. 33, no. 2,
pp. 140-158, 1994.

148

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:16:32 UTC from IEEE Xplore. Restrictions apply.

