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Abstract—We present a significant improvement to a 
methodology which was described in several earlier articles 
by Barr, et al. where we demonstrated a workflow which 
classifies the source code of large open source projects for 
vulnerability. Whereas in the past, to deal with dearth of 
minority examples we've applied upsampling and simulation 
technique, this present approach demonstrates that a clever 
choice of cost function sans upsampling results in excellent 
performance surpassing previous results. In this iteration a 
feed-forward neural network classifier was trained on Area 
Under Min(FP, FN) (AUM) loss. The AUM method is described 
in Hillman & Hocking. Similar to earlier work, to overcome 
the out-of-vocabulary challenge, an intermediate step Byte-Pair 
Encoding which 'compresses' the data and subsequently, with 
the compressed data, long short-term memory (LSTM) network 
is used to embed the tokens from which we assemble an 
embedding of function labels. This results in 128D embedding 
which along with additional 'interpretable', heuristics-based 
features which are used to classify CVEs. The resulting labeled 
dataset is extremely sparse, with a minority class consisting of 
roughly 0.5% of total. Demonstratively, the AUM cost function 
is undeterred by sparsity of data; this is amply demonstrated 
by the performance of the classifier. 

Jfeywonfc-vulnerability detection; static code analysis; 
common vulnerabilities & exposures (CVE); source code em-
bedding; byte-pair encoding; LSTM; ROC; AUC; classification 
of imbalanced data; Area Under Min(FP, FN) (AUM) 

PREAMBLE 

Software is complex and thus may contain bugs ex-
posing vulnerabilities that can be exploited by attackers to 
penetrate and harm a computer systems, steal sensitive data, 
and cause disruptions resulting in significant harm. Thus, it 
is generally recognized that identifying and fixing bugs will 
result in reducing vulnerabilities and lessening the impacts 
and risks of attacks. 

I. INTRODUCTION 

Although the objective of this article is to demonstrate a 
methodology to deal with a highly imbalanced tagged data, 
at the risk of repetition we describe the main features of the 
workflow emphasizing the approach to binary classification 

in the face of sparsity. This empirical study of multiple 
large open source projects the Android OS demonstrates 
the feasibility of static analysis workflow to rate CVE risk 
and in general to help identify vulnerabilities of software 
components. The workflow's main components are: 

1) Data prepossessing 
2) Byte-pair encoding 
3) Embedding with LSTM 
4) (Interpretable) feature extraction 
5) Classifications, specifically classification of highly im-

balanced data with area under the minimum (AUM). 
Written in standard C and C++ and Java, source code may 
be regarded as bags of words consisting of tokens, one 
bag of tokens per function. Much like a natural language, 
tokens consist of words, variables, functions, literal strings, 
punctuation andwhatnot. To embed tokens into a Euclidean 
space, we utilized S C R M L ' S L S T M module [1], 

The data is appended by tags representing Common 
Exposures & Vulnerabilities (CVE) [2]. The tags are quite 
sparse; the minority of class consisted of approximately 
1.37 percent of the functions while the majority consists 
of the remaining 98.63 percent. Whereas in past analyses 
to get over insufficient signal, we've implemented SMOTE: 
Synthetic Minority Over-sampling Technique [3], a procedure 
that amplifies the signal by simulating positively-tagged 
examples. However, in this iteration, we've modified the 
algorithm by bypassing this step by altering the loss function 
which we describe shortly. 

N . COMPARISON WITH PRIOR WORK 

As noted, slices of the methodology are described in 
earlier work [4], [5] & [6], but this workflow differs from the 
previous one in a significant way. Whereas in earlier work, 
either an upsampling technique or SMOTE which simulates 
examples of a minority class were used, neither of those two 
are used presently. Despite this, the approach presented was 
successful in improving classifier's performance. 
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i n . THE DATA 

This empirical study of three open source projects: 
Android OS v. 10, which is written in C, C++ and Java, 
the Linux kernel which is written in C and OpenSSL 
Core Library which is also written in C. A summary of 
in tables I and n. Links to the source code is found in [7] 
(Android OS), [8] (Linux) and [9] (OpenSSL.) 

Approximately 1.37 percent of the functions/methods 
are tagged as CVEs (see section 3.1). Tags represent the 
presence/absence of a CVE where non-CVE is represented 
with - 1 , and a CVE with +1. 

As mentioned earlier, the data in question is imbal-
anced. Indeed, the fraction of functions tagged as CVEs is 
exceedingly low. The Linux OS source code consists of 
approximately 585,101 functions with 22,260 CVEs; that is 
approximately 3.8 percent of the records associated with the 
Linux OS source code are tagged as —1 while the remaining 
96.2 percent tagged as +1. This kind of unbalanced data is 
generally considered difficult to classify. 

A. Common vulnerability exposures (CVE) 

Common Vulnerabilities & Exposures 
(CVE) is a database of publicly-disclosed software & 

firmware vulnerabilities and various risks for exposure to 
malware and 'bad actors' [2], Below is code inspection of 
C V E - 2 0 1 7 - 0 7 8 1 [10]. 

void b n e p u r e l e a s e b c b (tBNEP CONN* p b c b ) 
{ 

/* Ensure timer is stopped */ 
a l a r m _ f r e e ( p _ b c b - > c o n n _ t i m e r ) ; 

while ( ! f i x e d _ q u e u e _ i s _ e m p t y ( 
p _ b c b - > x m i t _ q ) ) 
{ 

0 s i _ f r e e ( f i x e d queue try dequeue ( 
\ t e x t b f { p _ b c b - > x m i t _ q } ) ) ; 

} 
f i x e d _ q u e u e _ f r e e ( \ t e x t b f { p _ b c b - > x m i t _ q } , NULL); 
p _ b c b - > x m i t _ q = NULL; > 

Based on the 'commit' message which says ' 'Free 
p_pending_data from tBNEP_CONN to avoid 
potential memory leaks," CVE-2017-0781 is 
known to cause a memory leak. 

I V . EMBEDDING, NEURAL NETWORKS & FEATURES 

A. Autoencoding with Deep learning 

Autoencoding or embedding refers to the process 
of employing a neural network to assign a numerical vector 
to an object like text. Neural networks have been applied to 
natural languages since the 2013 seminal work of Mikolov et 
al. [11] with a subsequent application to static code analysis 
in 2019 by Alon et al. [12] who used a different neural 
network architecture to embed code into a Euclidean space 
of an appropriate dimension. We employ a recurrent neural 
network architecture to embed source code tokens. 

B. Long Short-Term Memory (LSTM) Networks 

PARSING: To extract the token sequences, we first use 
Understand [13] to extract all functions, and then use 
srcML [1] to parse each function into an Advanced 
Semantic Tree (AST) and generate tokens. We have 
adopted the LSTM LANGUAGE MODEL [14], which we have 
implemented in this empirical analysis of Android, Linux 
and OpenSSL. 

AUTOENCODING WITH LSTM: As shown in Fig. 1, tokens 
are autoencoded into 128 dimension continuous vector, i.e., 
R1 2 8 . See [15] and [16], Indeed, an LSTM network is a re-
current network which is able to learn sequences of arbitrary 
lengths [17]. The general architecture of the network used 
for embedding functions is shown in Fig. 1. 

Table I: No. Functions by Project 

Android Android Linux OpenSSL T O T A L 

LANGUAGE C Java C C C/Java 

Non-CVE 1,099,278 1,143,050 562,841 14,124 2,819,293 
CVE 15,602 1,288 22,260 107 39,257 
Total 1,114,880 1,144,338 585,101 14,231 2,858,550 

Table II: Functions/Methods. 
Ancillary 

CVE Files 3,378 917 3,249 * 7,544 
Non-CVE Files 92,514 90,942 30,695 1,347 215,498 
CVE LOC 10,960,940 5,167,021 5,565,418 * 21,693,379 
Non-CVE LOC 27,977,505 11,915,969 15,571,929 386,649 55,852,052 
CVE Classes 774 3,536 0 * 4,310 
Non-CVE Classes 34,430 170,859 1 * 205,290 
CVE Structs 9,499 0 10,821 * 3,378 
Non-CVE Structs 56,434 0 28,317 662 85,413 

The asterisks (*) represent unknown values which are generally immaterial due to the relative smallness of OpenSSL. 
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Figure 2: The workflow tool chain for scoring vulnerability. 

EXPLAINABLE FEATURES: In addition to the auto-encoded 
features, we calculate additional features, some explanatory. 

1) Cosine similarity which measures the average 
correlation (cosine) between a feature vector and the 
mean of the feature vectors. 

2) Number of parameters is the number of param-
eters in a function (0 parameter if the input is void) 

3) Cyclomatic complexity measures branch com-
plexity like if and case. 

4) The length is the number of tokens in function body. 
5) The number of loops like for and while. 
6) Number of conditionals is a raw count of if 

and case. 
7) The number of system calls is a count of 

UNIX/Linux calls in a function (0 is none). 
8) Maximal line is the number of tokens in a longest 

line (between two successive semicolons.) 

V. THE PROCESS WORKFLOW 

Fig. 2 describes the process used to rate the risk of code 
components for vulnerability. This processing toolkit extends 
on a series of analyses and tool chains previously developed 
[18]-[21], 

This project incorporates two significant improvements: 

1 ) The introduction of 'EXPLAINABLE ' features, and more 
importantly, 

2) Implementing of a new, and as we see, effective cost 
function, ; AREA U N D E R M I N ( F P , F N ) ( A U M ) . 

To amplify, given that the data is highly unbalanced, 
item 2 allows for bypassing a need for upsampling. AUM 
specifics are discussed below. 

The tool chain transforms the data (source code) 
into a labeled feature matrix where each row represents 
a function. An embedding into R128 , a 128-dimensional 
Euclidean space achieves optimal performance constrained 
by practicality. We've discussed embedding calibration in 
[4] and [21]. 

The embedding chains several distinct parts: 

1) Token extraction with BYTE-PAIR ENCODING (BPE) 
(Philip Gage, 1994) [22] is a data compression algo-
rithm which high frequency pairs of consecutive bytes 
of data are replaced with bytes not occurring within the 
data. We use the SENTENCEPIECE, code in Github [23]. 

2) Token embedding with an LSTM network [24] 
3) Embedding function labels by 'reassembling' the tokens 

(the tokens produced by BPE procedure) by taking then-
average embedded value. 
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Figure 3: ROC curves for four different binary classifiers, with points on each curve colored using the minimum of False 
Positive and False Negative rates. The Sum of Min (SM) values over all points on the curve is shown in the panel title, 
and the proposed AUM loss function is a continuous differentiable relaxation of that quantity (minimizing AUM encourages 
good ROC curves with small values for sum of min, as in left panel). 

V I . A R E A U N D E R THE M I N OF F P A N D F N ( A U M ) : 

SURROGATE LOSS FOR IMBALANCED BINARY CLASSIFICATION 

PROBLEMS 

In this section we briefly explain the AUM surrogate 
loss function, which has been shown to result in 
ROC curve optimization for imbalanced binary classification 
problems [25]. We assume there is a data set of n labeled 
examples, and we have learned a function that outputs a 
real-valued predicted score for each example, / ( x ) € R. 
The threshold of zero is applied to this score in order 
to obtain a predicted class, sign[/(x)] G {—1,1}. True 
positives are examples with positive labels and positive 
predictions, whereas false positives are examples 
with negative labels and positive predictions. The ROC 
curve is a plot of True Positive Rate (TPR) ver-
sus False Positive Rate (FPR), when / (x ) + c is 
used as predictions, for all possible constants c e R that 
could be added to the predicted values. There are up to 
n + 1 distinct points on the ROC curve (if there are no 
ties in predicted scores), and at least two distinct points 
on the ROC curve (if all predicted scores have the same 
value, the ROC curve starts at FPR=TPR=0 then jumps 
diagonally to FPR=TPR=1). Each of the points on the ROC 
curve has a value for FPR and FNR (=1-TPR). The best 
point on the ROC curve is the one in the upper left (with 
FPR=0 and TPR=1 FNR=0). Good points on the ROC 
curve tend to have a low values for at least one of FPR 
and FNR, so it is a reasonable optimization objective to 
try to minimize total min(FNR,FPR) over all points on the 
ROC curve (we refer to this quantity as the Sum of Min 
or SM). For example, Figure 3 shows four ROC curves, 
each with different values for SM; the ideal ROC curve has 
a SM value of 0. Like the Area Under the ROC Curve 

(AUC), this SM optimization objective is a non-convex, 
piecewise constant function, so it can not be used in gradient 
descent algorithms directly. The AUM can be understood 
as an LI relaxation of this SM function; the AUM is a 
convex, piecewise linear function that is differentiable almost 
everywhere, so it can be used in gradient descent learning 
algorithms. In contrast to the logistic (binary cross-entropy) 
loss which encourages predictions that result in a correct 
labeling, the AUM loss encourages predictions that result 
in a correct ranking (Fig. 4). In fact, predicted values yi 
need only to be ranked correctly (all negative examples have 
smaller predicted scores than all positive examples) in order 
to achieve minimal AUM. 

A. Details of AUM computation 

Let there be a total of n labeled training examples 
{(Xi,yi) : Xi £ W,yi e { - l , + l } , i = 1,2,..., n}, in a data 
set or batch. Given a prediction vector y = [yi • • • yn]J e R " 
we can compute the following false positive and false 
negative totals for each example i € { 1 , . . . , n}, 

F P i = £ Ihi = ~1]> ™i= E IlVi = 1]- (!) 
r-Vj>Vi r-Vj<Vi 

In other words, the F P J , F N , are the error values at the 
point on the ROC curve that corresponds to observation 
i. We sort the observations by predicted value yi, yielding 
a permutation {si , . ••,««} of the indices { 1 , . . . , n } such 
that for every q € { 2 , . . . , n } we have ySq_ 1 > ySq. All 
of the error values FP,, FNJ, for every i € { 1 , . . . , n}, can 
then be computed via a modified cumulative sum. We have 
n + 1 points (not necessarily unique) on the ROC curve, 
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Figure 4: Visualizing AUM (Area Under Min of FP and FN) and logistic loss functions for a positive and negative label. 
Minima of AUM occur for any predictions that result in correct ranking (predicted score for positive label greater than 
predicted score for negative label), whereas minimizing logistic loss tends to encourage predictions that result in a correct 
labeling. 

from which the AUM can be computed via 
n 

AUM(y) = Yl(y», - i - t f . l ) m i n { F P . „ F N . J . (2) 
<7=2 

B. Classifying Code with AUM Loss 

As we noticed earlier, the data is sparse. Of the 
2,858,550 functions, a mere 39,257 or approximately 2.11 
percent are tagged as CVE ('positive.') Until recently, dearth 
of minority class (CVEs) hinders a direct approach to mod-
eling, requiring upsampling. Barr et al. have used SMOTE 
to amplify signal by simulating a minority class [5], [21]. 
However, it appears that with the AUM cost function a 
classifier is apt to learn patters and predict accurately. 

V I I . M O D E L PERFORMANCE WITH A R E A U N D E R M I N ( F P , F N ) 

( A U M ) LOSS 

In essence, employing the AUM loss function 
with neural networks is a "black-box" model which shed 
little light on the significance of the features. We demon-
strate that training data consisting of 2,838,550 records 
with 132 features plus a binary tag of which 39,257 are 
positively tagged (with (+1)) and the remaining 2,819,293 
are negatively tagged (with —1). The data set is highly 
imbalanced; the minority class, those tagged with (+1), 
consisting of approximately 1.73 percent of total. We deploy 
a two-layer fully-connected, feed-forward neural network 
classifier with input dimension consisting of 132 nodes, two 
hidden layers, 250 nodes each and a single binary output 

layer. Whereas a default loss function is binary cross 
entropy (BCE), i.e., a function of the form BCE(/3) = 
E Vj loE(Pj)+(l~yj) l og ( l -P j ) wherepj = p{xy P) is the 
probability of y j = 1 conditioned on input vector Xj and fi is 
weight matrix, we deploy Area Under Min(FP, FN) 
(AUM) loss which is previously described. With k=3-

fold cross validation, 70-20-10 train-test-validation split, and 
based on empirics, optimal calibration a batch size of 1,500 
and learning rate of 0.00003 an optimal network result in 
lift of 0.875 at just under 5 percentile, and AUC (area under 
the ROC curve) of 0.98 (See Fig. 6.) 

VIII. CONCLUSION 

Making better distinctions with the AUM loss 

This empirical analysis demonstrated that static code 
analysis using the tool chain described therein might indeed 
prove to be effective in identifying vulnerabilities that could 
expose computers and data to unnecessary costly risks. The 
results obtain for the binary classifier are high. Still an 
ideal model will result in a score card which identify 
risk factors. For example, we propose to identify properties 
associated with coding standards like the 'long-method' 
code-smell of Kent Beck and Martin Fowler [26,27]. 

Future work 

Clearly static code analysis extends far beyond rating 
for vulnerability. The tools developed thus far may be 
put to work to perform tasks like analyzing complexity, 
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(textual) data management (storage & retrieval), copyright 
investigation & plagiarism, etc. Furthermore, we're keen 
on developing a score card which explains the risks, i.e., 
provides reasoning for a score. 
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