
Classifying Imbalanced Data with AUM Loss

Joseph R. Barr
MI Lab, Acronis SCS,

Scottsdale, Arizona, USA
barr.jr@gmail.com

Toby D. Hocking
Northern Arizona University

Arizona, USA
toby, hocking @nau. edu

Garinn Morton
MI Lab, Acronis SCS,

Scottsdale, Arizona, USA

Tyler Thatcher
MI Lab, Acronis SCS,

Scottsdale, Arizona, USA
tyler. thatcher@ acronisscs. com

Peter Shaw
Oujiang Laboritory,

Wenzhou, Zhejiang, China
peter show @ ojlab. ac. cn

Abstract—We present a significant improvement to a
methodology which was described in several earlier articles
by Barr, et al. where we demonstrated a workflow which
classifies the source code of large open source projects for
vulnerability. Whereas in the past, to deal with dearth of
minority examples we've applied upsampling and simulation
technique, this present approach demonstrates that a clever
choice of cost function sans upsampling results in excellent
performance surpassing previous results. In this iteration a
feed-forward neural network classifier was trained on Area
Under Min(FP, FN) (AUM) loss. The AUM method is described
in Hillman & Hocking. Similar to earlier work, to overcome
the out-of-vocabulary challenge, an intermediate step Byte-Pair
Encoding which 'compresses' the data and subsequently, with
the compressed data, long short-term memory (LSTM) network
is used to embed the tokens from which we assemble an
embedding of function labels. This results in 128D embedding
which along with additional 'interpretable', heuristics-based
features which are used to classify CVEs. The resulting labeled
dataset is extremely sparse, with a minority class consisting of
roughly 0.5% of total. Demonstratively, the AUM cost function
is undeterred by sparsity of data; this is amply demonstrated
by the performance of the classifier.

Jfeywonfc-vulnerability detection; static code analysis;
common vulnerabilities & exposures (CVE); source code em-
bedding; byte-pair encoding; LSTM; ROC; AUC; classification
of imbalanced data; Area Under Min(FP, FN) (AUM)

PREAMBLE

Software is complex and thus may contain bugs ex-
posing vulnerabilities that can be exploited by attackers to
penetrate and harm a computer systems, steal sensitive data,
and cause disruptions resulting in significant harm. Thus, it
is generally recognized that identifying and fixing bugs will
result in reducing vulnerabilities and lessening the impacts
and risks of attacks.

I. INTRODUCTION

Although the objective of this article is to demonstrate a
methodology to deal with a highly imbalanced tagged data,
at the risk of repetition we describe the main features of the
workflow emphasizing the approach to binary classification

in the face of sparsity. This empirical study of multiple
large open source projects the Android OS demonstrates
the feasibility of static analysis workflow to rate CVE risk
and in general to help identify vulnerabilities of software
components. The workflow's main components are:

1) Data prepossessing
2) Byte-pair encoding
3) Embedding with LSTM
4) (Interpretable) feature extraction
5) Classifications, specifically classification of highly im-

balanced data with area under the minimum (AUM).
Written in standard C and C++ and Java, source code may
be regarded as bags of words consisting of tokens, one
bag of tokens per function. Much like a natural language,
tokens consist of words, variables, functions, literal strings,
punctuation andwhatnot. To embed tokens into a Euclidean
space, we utilized S C R M L ' S L S T M module [1],

The data is appended by tags representing Common
Exposures & Vulnerabilities (CVE) [2]. The tags are quite
sparse; the minority of class consisted of approximately
1.37 percent of the functions while the majority consists
of the remaining 98.63 percent. Whereas in past analyses
to get over insufficient signal, we've implemented SMOTE:
Synthetic Minority Over-sampling Technique [3], a procedure
that amplifies the signal by simulating positively-tagged
examples. However, in this iteration, we've modified the
algorithm by bypassing this step by altering the loss function
which we describe shortly.

N . COMPARISON WITH PRIOR WORK

As noted, slices of the methodology are described in
earlier work [4], [5] & [6], but this workflow differs from the
previous one in a significant way. Whereas in earlier work,
either an upsampling technique or SMOTE which simulates
examples of a minority class were used, neither of those two
are used presently. Despite this, the approach presented was
successful in improving classifier's performance.

135

2022 Fourth International Conference on Transdisciplinary AI (TransAI)

978-1-6654-7184-8/22/$31.00 ©2022 IEEE
DOI 10.1109/TransAI54797.2022.00030

20
22

 F
ou

rth
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ra

ns
di

sc
ip

lin
ar

y
A

I (
Tr

an
sA

I)
 |

97
8-

1-
66

54
-7

18
4-

8/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
Tr

an
sA

I5
47

97
.2

02
2.

00
03

0

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

i n . THE DATA

This empirical study of three open source projects:
Android OS v. 10, which is written in C, C++ and Java,
the Linux kernel which is written in C and OpenSSL
Core Library which is also written in C. A summary of
in tables I and n. Links to the source code is found in [7]
(Android OS), [8] (Linux) and [9] (OpenSSL.)

Approximately 1.37 percent of the functions/methods
are tagged as CVEs (see section 3.1). Tags represent the
presence/absence of a CVE where non-CVE is represented
with - 1 , and a CVE with +1.

As mentioned earlier, the data in question is imbal-
anced. Indeed, the fraction of functions tagged as CVEs is
exceedingly low. The Linux OS source code consists of
approximately 585,101 functions with 22,260 CVEs; that is
approximately 3.8 percent of the records associated with the
Linux OS source code are tagged as —1 while the remaining
96.2 percent tagged as +1. This kind of unbalanced data is
generally considered difficult to classify.

A. Common vulnerability exposures (CVE)

Common Vulnerabilities & Exposures
(CVE) is a database of publicly-disclosed software &

firmware vulnerabilities and various risks for exposure to
malware and 'bad actors' [2], Below is code inspection of
C V E - 2 0 1 7 - 0 7 8 1 [10].

void b n e p u r e l e a s e b c b (tBNEP CONN* p b c b)
{

/* Ensure timer is stopped */
a l a r m _ f r e e (p _ b c b - > c o n n _ t i m e r) ;

while (! f i x e d _ q u e u e _ i s _ e m p t y (
p _ b c b - > x m i t _ q))
{

0 s i _ f r e e (f i x e d queue try dequeue (
\ t e x t b f { p _ b c b - > x m i t _ q })) ;

}
f i x e d _ q u e u e _ f r e e (\ t e x t b f { p _ b c b - > x m i t _ q } , NULL);
p _ b c b - > x m i t _ q = NULL; >

Based on the 'commit' message which says ' 'Free
p_pending_data from tBNEP_CONN to avoid
potential memory leaks," CVE-2017-0781 is
known to cause a memory leak.

I V . EMBEDDING, NEURAL NETWORKS & FEATURES

A. Autoencoding with Deep learning

Autoencoding or embedding refers to the process
of employing a neural network to assign a numerical vector
to an object like text. Neural networks have been applied to
natural languages since the 2013 seminal work of Mikolov et
al. [11] with a subsequent application to static code analysis
in 2019 by Alon et al. [12] who used a different neural
network architecture to embed code into a Euclidean space
of an appropriate dimension. We employ a recurrent neural
network architecture to embed source code tokens.

B. Long Short-Term Memory (LSTM) Networks

PARSING: To extract the token sequences, we first use
Understand [13] to extract all functions, and then use
srcML [1] to parse each function into an Advanced
Semantic Tree (AST) and generate tokens. We have
adopted the LSTM LANGUAGE MODEL [14], which we have
implemented in this empirical analysis of Android, Linux
and OpenSSL.

AUTOENCODING WITH LSTM: As shown in Fig. 1, tokens
are autoencoded into 128 dimension continuous vector, i.e.,
R1 2 8 . See [15] and [16], Indeed, an LSTM network is a re-
current network which is able to learn sequences of arbitrary
lengths [17]. The general architecture of the network used
for embedding functions is shown in Fig. 1.

Table I: No. Functions by Project

Android Android Linux OpenSSL T O T A L

LANGUAGE C Java C C C/Java

Non-CVE 1,099,278 1,143,050 562,841 14,124 2,819,293
CVE 15,602 1,288 22,260 107 39,257
Total 1,114,880 1,144,338 585,101 14,231 2,858,550

Table II: Functions/Methods.
Ancillary

CVE Files 3,378 917 3,249 * 7,544
Non-CVE Files 92,514 90,942 30,695 1,347 215,498
CVE LOC 10,960,940 5,167,021 5,565,418 * 21,693,379
Non-CVE LOC 27,977,505 11,915,969 15,571,929 386,649 55,852,052
CVE Classes 774 3,536 0 * 4,310
Non-CVE Classes 34,430 170,859 1 * 205,290
CVE Structs 9,499 0 10,821 * 3,378
Non-CVE Structs 56,434 0 28,317 662 85,413

The asterisks (*) represent unknown values which are generally immaterial due to the relative smallness of OpenSSL.

136

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

Figure 2: The workflow tool chain for scoring vulnerability.

EXPLAINABLE FEATURES: In addition to the auto-encoded
features, we calculate additional features, some explanatory.

1) Cosine similarity which measures the average
correlation (cosine) between a feature vector and the
mean of the feature vectors.

2) Number of parameters is the number of param-
eters in a function (0 parameter if the input is void)

3) Cyclomatic complexity measures branch com-
plexity like if and case.

4) The length is the number of tokens in function body.
5) The number of loops like for and while.
6) Number of conditionals is a raw count of if

and case.
7) The number of system calls is a count of

UNIX/Linux calls in a function (0 is none).
8) Maximal line is the number of tokens in a longest

line (between two successive semicolons.)

V. THE PROCESS WORKFLOW

Fig. 2 describes the process used to rate the risk of code
components for vulnerability. This processing toolkit extends
on a series of analyses and tool chains previously developed
[18]-[21],

This project incorporates two significant improvements:

1) The introduction of 'EXPLAINABLE ' features, and more
importantly,

2) Implementing of a new, and as we see, effective cost
function, ; AREA U N D E R M I N (F P , F N) (A U M) .

To amplify, given that the data is highly unbalanced,
item 2 allows for bypassing a need for upsampling. AUM
specifics are discussed below.

The tool chain transforms the data (source code)
into a labeled feature matrix where each row represents
a function. An embedding into R128 , a 128-dimensional
Euclidean space achieves optimal performance constrained
by practicality. We've discussed embedding calibration in
[4] and [21].

The embedding chains several distinct parts:

1) Token extraction with BYTE-PAIR ENCODING (BPE)
(Philip Gage, 1994) [22] is a data compression algo-
rithm which high frequency pairs of consecutive bytes
of data are replaced with bytes not occurring within the
data. We use the SENTENCEPIECE, code in Github [23].

2) Token embedding with an LSTM network [24]
3) Embedding function labels by 'reassembling' the tokens

(the tokens produced by BPE procedure) by taking then-
average embedded value.

137

Figure 1: LSTM language model for generating function embedding.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

Figure 3: ROC curves for four different binary classifiers, with points on each curve colored using the minimum of False
Positive and False Negative rates. The Sum of Min (SM) values over all points on the curve is shown in the panel title,
and the proposed AUM loss function is a continuous differentiable relaxation of that quantity (minimizing AUM encourages
good ROC curves with small values for sum of min, as in left panel).

V I . A R E A U N D E R THE M I N OF F P A N D F N (A U M) :

SURROGATE LOSS FOR IMBALANCED BINARY CLASSIFICATION

PROBLEMS

In this section we briefly explain the AUM surrogate
loss function, which has been shown to result in
ROC curve optimization for imbalanced binary classification
problems [25]. We assume there is a data set of n labeled
examples, and we have learned a function that outputs a
real-valued predicted score for each example, / (x) € R.
The threshold of zero is applied to this score in order
to obtain a predicted class, sign[/(x)] G {—1,1}. True
positives are examples with positive labels and positive
predictions, whereas false positives are examples
with negative labels and positive predictions. The ROC
curve is a plot of True Positive Rate (TPR) ver-
sus False Positive Rate (FPR), when / (x) + c is
used as predictions, for all possible constants c e R that
could be added to the predicted values. There are up to
n + 1 distinct points on the ROC curve (if there are no
ties in predicted scores), and at least two distinct points
on the ROC curve (if all predicted scores have the same
value, the ROC curve starts at FPR=TPR=0 then jumps
diagonally to FPR=TPR=1). Each of the points on the ROC
curve has a value for FPR and FNR (=1-TPR). The best
point on the ROC curve is the one in the upper left (with
FPR=0 and TPR=1 FNR=0). Good points on the ROC
curve tend to have a low values for at least one of FPR
and FNR, so it is a reasonable optimization objective to
try to minimize total min(FNR,FPR) over all points on the
ROC curve (we refer to this quantity as the Sum of Min
or SM). For example, Figure 3 shows four ROC curves,
each with different values for SM; the ideal ROC curve has
a SM value of 0. Like the Area Under the ROC Curve

(AUC), this SM optimization objective is a non-convex,
piecewise constant function, so it can not be used in gradient
descent algorithms directly. The AUM can be understood
as an LI relaxation of this SM function; the AUM is a
convex, piecewise linear function that is differentiable almost
everywhere, so it can be used in gradient descent learning
algorithms. In contrast to the logistic (binary cross-entropy)
loss which encourages predictions that result in a correct
labeling, the AUM loss encourages predictions that result
in a correct ranking (Fig. 4). In fact, predicted values yi
need only to be ranked correctly (all negative examples have
smaller predicted scores than all positive examples) in order
to achieve minimal AUM.

A. Details of AUM computation

Let there be a total of n labeled training examples
{(Xi,yi) : Xi £ W,yi e { - l , + l } , i = 1,2,..., n}, in a data
set or batch. Given a prediction vector y = [yi • • • yn]J e R "
we can compute the following false positive and false
negative totals for each example i € { 1 , . . . , n},

F P i = £ Ihi = ~1]> ™i= E IlVi = 1]- (!)
r-Vj>Vi r-Vj<Vi

In other words, the F P J , F N , are the error values at the
point on the ROC curve that corresponds to observation
i. We sort the observations by predicted value yi, yielding
a permutation {si , . ••,««} of the indices { 1 , . . . , n } such
that for every q € { 2 , . . . , n } we have ySq_ 1 > ySq. All
of the error values FP,, FNJ, for every i € { 1 , . . . , n}, can
then be computed via a modified cumulative sum. We have
n + 1 points (not necessarily unique) on the ROC curve,

138

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

Figure 4: Visualizing AUM (Area Under Min of FP and FN) and logistic loss functions for a positive and negative label.
Minima of AUM occur for any predictions that result in correct ranking (predicted score for positive label greater than
predicted score for negative label), whereas minimizing logistic loss tends to encourage predictions that result in a correct
labeling.

from which the AUM can be computed via
n

AUM(y) = Yl(y», - i - t f . l) m i n { F P . „ F N . J . (2)
<7=2

B. Classifying Code with AUM Loss

As we noticed earlier, the data is sparse. Of the
2,858,550 functions, a mere 39,257 or approximately 2.11
percent are tagged as CVE ('positive.') Until recently, dearth
of minority class (CVEs) hinders a direct approach to mod-
eling, requiring upsampling. Barr et al. have used SMOTE
to amplify signal by simulating a minority class [5], [21].
However, it appears that with the AUM cost function a
classifier is apt to learn patters and predict accurately.

V I I . M O D E L PERFORMANCE WITH A R E A U N D E R M I N (F P , F N)

(A U M) LOSS

In essence, employing the AUM loss function
with neural networks is a "black-box" model which shed
little light on the significance of the features. We demon-
strate that training data consisting of 2,838,550 records
with 132 features plus a binary tag of which 39,257 are
positively tagged (with (+1)) and the remaining 2,819,293
are negatively tagged (with —1). The data set is highly
imbalanced; the minority class, those tagged with (+1),
consisting of approximately 1.73 percent of total. We deploy
a two-layer fully-connected, feed-forward neural network
classifier with input dimension consisting of 132 nodes, two
hidden layers, 250 nodes each and a single binary output

layer. Whereas a default loss function is binary cross
entropy (BCE), i.e., a function of the form BCE(/3) =
E Vj loE(Pj)+(l~yj) l og (l -P j) wherepj = p{xy P) is the
probability of y j = 1 conditioned on input vector Xj and fi is
weight matrix, we deploy Area Under Min(FP, FN)
(AUM) loss which is previously described. With k=3-

fold cross validation, 70-20-10 train-test-validation split, and
based on empirics, optimal calibration a batch size of 1,500
and learning rate of 0.00003 an optimal network result in
lift of 0.875 at just under 5 percentile, and AUC (area under
the ROC curve) of 0.98 (See Fig. 6.)

VIII. CONCLUSION

Making better distinctions with the AUM loss

This empirical analysis demonstrated that static code
analysis using the tool chain described therein might indeed
prove to be effective in identifying vulnerabilities that could
expose computers and data to unnecessary costly risks. The
results obtain for the binary classifier are high. Still an
ideal model will result in a score card which identify
risk factors. For example, we propose to identify properties
associated with coding standards like the 'long-method'
code-smell of Kent Beck and Martin Fowler [26,27].

Future work

Clearly static code analysis extends far beyond rating
for vulnerability. The tools developed thus far may be
put to work to perform tasks like analyzing complexity,

139

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

(textual) data management (storage & retrieval), copyright
investigation & plagiarism, etc. Furthermore, we're keen
on developing a score card which explains the risks, i.e.,
provides reasoning for a score.

ACKNOWLEDGEMENTS . Special thanks to Acronis SCS
(USA) for funding the project and for all the support and
advice we've received from our friends including Sergey
Ulasen and Sanjeev Solanki of Acronis (Singapore) and Neil

Proctor of Acronis SCS. Peter Shaw was supported in part by
the Oujiang Lab (Zhejiang Lab for Regenerative Medicine,
Vision and Brain Health) startup fund.

REFERENCES

[1] SRCML, "Srcml SciML," https://www.srcml.org/.

[2] Mitre Corporation, https://cve.mitre.org/cve/, june 2020.

140

Figure 5: The evolution of AUM loss (top), AUC (middle) and lift (bottom) over 400 epochs.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

Figure 6: Gains chart: lift 0.875 at a 4.99 percentile.

[3] N. Chawla, K. Boyer, L. Hall, and P. Kegelmeyer, "Synthetic
minority over-sampling technique," Journal of Artificial In-
telligence Research 16 (2002) 321-357, 2002.

[4] J. R. Barr, P. Shaw, F. N. Abu-Khzam, H. Yin, S. Yu, and
T. Thatcher, "Combinatorial code classification & vulnerabil-
ity rating," in TransAI, 2020.

[5] J. R. Barr, P. Shaw, and T. Thatcher, "Vulnerability analysis
of the android kernel," ArXiv, vol. abs/2112.11214, 2021.

[6] J. R. Barr and T. Thatcher, "On the vulnerability of large cor-
pora source code," 2022 IEEE 16th International Conference
on Semantic Computing (ICSC), pp. 314-317, 2022.

[7] Google & The Open Handset Alliance,
"Android Fluoride Bluetooth stack," https://android.
googlesource.com/platform/system/bt, june 2020.

[8] Linux, "Linux Github," https://github.com/torvalds/linux,
2022.

[9] OpenSSL, "OpenSSL Github," https://github.com/openssl/
openssl, 2022.

[10] Mitre Corporation, "CVE-2017-0781," https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-0781, june 2017.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
"Distributed representations of words and phrases and their
compositionality," in Advances in neural information proc.
sys., 2013, pp. 3111-3119.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, "code2vec:
Learning distributed representations of code," Proceedings of
the ACM on Programming Languages, vol. 3, no. POPL, pp.
1-29, 2019.

[13] SciTools, "Scitools SciTools," https://scitools.com/features/.

[14] M. L. Soutner D., "Application of lstm neural networks in
language modelling." Lecture Notes in Computer Science, vol.
8082, 2013.

[15] M. Sundermeyer, R. Schliiter, and H. Ney, 'Lstm neural
networks for language modeling," in INTERSPEECH, 2012.

[16] A. B. Ke Tran and C. Monz, "Recurrent memory networks
for language modeling," in Proceedings ofNAACL-HLT 2016,
pages 321-331, 2016.

[17] S. Hochreiter and J. Schmidhuber, "Long short-term mem-
ory," Neural Computation, vol. 9(8), pp. 1735-1780, 1997.

[18] J. R. Barr, P. Shaw, F. N. Abu-Khzam, and J. Chen, "Combi-
natorial text classification: the effect of multi-parameterized
correlation clustering," in 2019 First International Conference
on Graph Computing (GC), 2019, pp. 29-36.

[19] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler,
M. A. Langston, and N. F. Samatova, "Genome-scale compu-
tational approaches to memory-intensive applications in sys-
tems biology," in SC'05: Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing. IEEE, 2005, pp. 12-12.

[20] R. Jayaraj, G. Raymond, S. Krishnan, K. S. Tzou, S. Baxi,
M. R. Ram, S. K. Govind, H. C. Chandramoorthy, F. N.
Abu-Khzam, and P. Shaw, "Clinical theragnostic potential of
diverse mirna expressions in prostate cancer: A systematic
review and meta-analysis," Cancers, vol. 12, no. 5, p. 1199,
2020.

[21] J. R. Barr and T. Thatcher, "On the vulnerability of large
corpora source code," in 2022 IEEE 16th International Con-
ference on Semantic Computing (ICSC), 314-317, 202.

[22] P. Gage, "A new algorithm for data compression," Dr. Dobbs,
1994.

[23] R. Sennrich, B. Haddow, and A. Birch, "Sentencepiece,"
2020.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., "Pytorch: An imperative style, high-performance deep
learning library," Advances in neural information processing
systems, vol. 32, 2019.

[25] J. Hillman and T. D. Hocking, "Optimizing ROC curves with
a sort-based surrogate loss fiinction for binary classification
and changepoint detection," CoRR, vol. abs/2107.01285,
2021. [Online], Available: https://arxiv.org/abs/2107.01285

[26] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
"Refactoring: improving the design of existing code, ser," in
Addison Wesley object technology series. Addison-Wesley,
1999.

[27] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

141

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on August 26,2024 at 03:11:07 UTC from IEEE Xplore. Restrictions apply.

