
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ucgs20

Survival Regression with Accelerated Failure Time
Model in XGBoost

Avinash Barnwal, Hyunsu Cho & Toby Hocking

To cite this article: Avinash Barnwal, Hyunsu Cho & Toby Hocking (2022) Survival Regression
with Accelerated Failure Time Model in XGBoost, Journal of Computational and Graphical
Statistics, 31:4, 1292-1302, DOI: 10.1080/10618600.2022.2067548

To link to this article: https://doi.org/10.1080/10618600.2022.2067548

View supplementary material

Published online: 24 May 2022.

Submit your article to this journal

Article views: 1290

View related articles

View Crossmark data

Citing articles: 23 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=ucgs20
https://www.tandfonline.com/journals/ucgs20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618600.2022.2067548
https://doi.org/10.1080/10618600.2022.2067548
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2022.2067548
https://www.tandfonline.com/doi/suppl/10.1080/10618600.2022.2067548
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=ucgs20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2022.2067548?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10618600.2022.2067548?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2067548&domain=pdf&date_stamp=24 May 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2067548&domain=pdf&date_stamp=24 May 2022
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2022.2067548?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/10618600.2022.2067548?src=pdf

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS
2022, VOL. 31, NO. 4, 1292–1302
https://doi.org/10.1080/10618600.2022.2067548

Survival Regression with Accelerated Failure Time Model in XGBoost

Avinash Barnwala, Hyunsu Chob, and Toby Hockingc

aDepartment of Statistics, Stony Brook University, Stony Brook, NY; bNVIDIA, Santa Clara, CA; cSchool of Informatics, Computing, and Cyber Systems,
Northern Arizona University, Flagstaff, AZ

ABSTRACT
Survival regression is used to estimate the relation between time-to-event and feature variables, and is
important in application domains such as medicine, marketing, risk management, and sales management.
Nonlinear tree based machine learning algorithms as implemented in libraries such as XGBoost, scikit-learn,
LightGBM, and CatBoost are often more accurate in practice than linear models. However, existing state-
of-the-art implementations of tree-based models have offered limited support for survival regression. In
this work, we implement loss functions for learning accelerated failure time (AFT) models in XGBoost, to
increase the support for survival modeling for different kinds of label censoring. We demonstrate with real
and simulated experiments the effectiveness of AFT in XGBoost with respect to a number of baselines, in two
respects: generalization performance and training speed. Furthermore, we take advantage of the support
for NVIDIA GPUs in XGBoost to achieve substantial speedup over multi-core CPUs. To our knowledge, our
work is the first implementation of AFT that uses the processing power of NVIDIA GPUs. Starting from the
1.2.0 release, the XGBoost package natively supports the AFT model. The addition of AFT in XGBoost has
had significant impact in the open source community, and a few statistics packages now use the XGBoost
AFT model. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received November 2020
Accepted April 2022

KEYWORDS
Gradient boosting; GPU
computing; Open source;
Survival analysis; XGBoost

1. Introduction

Survival analysis is a prominent subfield of statistics, where the
goal is to model time duration to a given event (e.g., death).
Given the nature of time-to-event data, labels may not be com-
pletely observed and only censored labels are given. For data
points whose label is censored, the exact label y is not known but
only a range (y, y) that contains it. The topic has drawn a large
body of research literature in the last few decades. See Wang, Li,
and Reddy (2019) for a general survey.

The Cox proportional hazards (Cox-PH) model (Cox 1972)
is one of the most commonly used models in survival anal-
ysis. The model estimates the hazard function h(t), which is
defined to be the likelihood of the event occurring at time t
given that no event has occurred before time t. The Cox-PH
model is of form h(t, x) = h0(t) exp (〈w, x〉), where the baseline
hazard function h0(t) depends only on time and the features x
have multiplicative effects on h. Given the parameters w, it is
clear which of the normalized features x has the largest effect
on survival. However, it is nontrivial to predict time-to-event
ŷ(x) in the Cox-PH model. We would need to estimate the
baseline hazard function h0(t) using a nonparametric estimator
known as Breslow’s estimator (Breslow 1972; Allison 2010). The
computation of Breslow’s estimator requires access to the full
training data and is computationally expensive for big data.

The accelerated failure time (AFT) model is another well-
known method for survival analysis, although perhaps less often

CONTACT Hyunsu Cho phcho@nvidia.com NVIDIA, Santa Clara, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

used than Cox-PH. We choose to explore AFT in this article for
two primary reasons. First, we would like to not only analyze
model parameters (coefficients) but also perform predictive
analysis. While Cox-PH gives relative importance of features, it
does not yield a usable prediction ŷ easily (Allison 2010). With
the AFT model, we can predict unknown labels using only the
fitted parameters and a feature vector. Second, the AFT model
may provide a better fit when proportional hazard assumption
does not hold (Faruk 2018).

Miller (1976) proposed the AFT model for the first time, and
later Buckley and James (1979) refined it to obtain an asymp-
totically consistent estimator using the least squares approach.
Khan and Shaw (2016) and Mimi and Khan (2021) discuss
methods for enabling variable selection to fit AFT models from
high-dimensional data. See Wei (1992) and Chiou, Kang, and
Yan (2014) for overviews on the topic of AFT models.

Tree-based models have shown better performance than lin-
ear models in terms of detecting complex and nonlinear pat-
terns in the feature variables. The gradient boosting algorithm
(Friedman 2001) fits an additive ensemble of decision trees
in a stepwise fashion to greedily optimize a general class of
loss functions �(y, ŷ). Gradient boosting is widely used due to
its simplicity and predictive performance. The algorithm pro-
duces an ensemble of decision trees and exhibits many desirable
properties as a statistical model, such as being slow to overfit-
ting and having asymptotic convergence guarantees (Bühlmann

© 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America

https://doi.org/10.1080/10618600.2022.2067548
https://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2067548&domain=pdf&date_stamp=2022-11-05
mailto:phcho@nvidia.com
http://www.tandfonline.com/r/JCGS

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1293

and Hothorn 2007; Zhang and Yu 2003). Gradient boosting
is versatile, as it can optimize a general class of loss function
�(y, ŷ) where y represents the true label and ŷ the predicted
label. It has been successfully used in classification (Friedman,
Hastie, and Tibshirani 2000), document ranking (Burges 2010),
structured prediction (Chen et al. 2015) and other applications.
Today, there are several scalable, efficient software packages
that implement gradient boosting, including XGBoost (Chen
and Guestrin 2016), LightGBM (Ke et al. 2017), Scikit-Learn
(Pedregosa et al. 2011), and Catboost (Prokhorenkova et al.
2018).

XGBoost is a fast implementation of gradient boosting that
speeds up convergence by using the second-order partial deriva-
tive of the loss function. XGBoost is able to integrate with a
variety of programming environments such as R and Python
and integrates with frameworks for distributed computing, such
as Dask and Apache Spark. Integration of AFT with XGBoost
therefore, makes survival analysis easier in the big data setting.

There are a few previous implementations of survival anal-
ysis in tree based models. Schmid and Hothorn (2008) uses
boosting framework for AFT and considers the negative log-
likelihood as loss function. There are also other tree based
survival models such as Random Survival Trees (Ishwaran et al.
2008), Cox-Boosting (Binder and Schumacher 2008), Bagging
Survival Trees (Hothorn et al. 2004), Scikit-Survival (Pölsterl
2020), and Cox-PH in XGBoost (Lundberg, Erion, and Lee
2019). Most of the models are limited to right-censored out-
comes. Maximum Margin Interval Trees (Drouin, Hocking, and
Laviolette 2017) support interval-censored labels.

Survival analysis is broadly useful in a variety of applications,
such as survival prediction of cancer patients (Viganò et al.
2000), customer churn (Van den Poel and Larivière 2004), credit
scoring (Dirick, Claeskens, and Baesens 2017), failure times of
mechanical systems (Susto et al. 2015; Barabadi, Barabady, and
Markeset 2010). However, binary machine learning classifiers
have been often used where survival methodology is applicable,
due to concerns about predictive accuracy (Kvamme, Borgan,
and Scheel 2019). For example, Vaid et al. (2020) uses XGBoost
binary classifiers to predict whether COVID-19 patients will
develop complications in a given time frame, achieving substan-
tially better AUC-ROC and AUC-PR than generalized linear
models. While binary classifiers may provide for a state-of-art
predictive accuracy, one loses flexibility that comes from directly
modeling time duration to events: one is forced to decide prede-
termined duration(s) where an event is to occur or not. AFT in
XGBoost addresses these challenges in the following two ways.
First, the model is able to capture nonlinear patterns in the data.
Second, the model readily produces survival time estimates; to
compute predictions, we only need the fitted model parameters
and a feature vector.

Summary of novel contributions. We propose a novel adap-
tation of the AFT model to integrate with XGBoost. Our
implementation supports all modes of label censoring, including
interval-censoring. We run experiments with real and simulated
datasets to demonstrate the generalization performance of the
AFT model in XGBoost. Furthermore, we are able to accelerate
training by using XGBoost’s built-in support for NVIDIA GPUs.

2. AFT in XGBoost

The original AFT model takes the following form:

ln Y = 〈w, x〉 + σZ,

where x represents the input features, w the coefficients, Y the
survival time (the output label), and Z a random variable of
a known probability distribution. Both Y and Z are random
variables. Note that this model is a generalized form of a linear
regression model Y = 〈w, x〉. In order to make AFT work with
gradient boosting, we revise the model as follows:

ln Y = T (x) + σZ, (1)

where T (x) represents the output from the decision tree ensem-
ble, given input x.

2.1. Derivation of AFT Loss Function

XGBoost optimizes a twice-differentiable convex loss function
�(·, ·) in its second-order method of gradient boosting (Chen
and Guestrin 2016). We will now define a suitable loss function
�AFT to represent the AFT model. Let D = {(xi, yi)}n

i=1 denote
the training data, and let Y1, . . . , Yn denote random variables iid
with the distribution for Y . Let fY and FY denote the probability
density function (PDF) and the cumulative distribution func-
tion (CDF) for Y , respectively. The likelihood function for D is
the product of probability densities fY for individual data points:

L(D) = P[Y1 = y1, . . . , Yn = yn] =
n∏

i=1
P[Yi = yi] =

n∏
i=1

fY (yi).

As commonly done in machine learning literature, we maxi-
mize log-likelihood instead:

ln L(D) =
n∑

i=1
lnP[Yi = yi] =

n∑
i=1

ln fY(yi). (2)

Since we do not know yi for some data points, due to label
censoring, we revise the likelihood function (2) to take account
of the censored labels:

ln L(D) =
∑

lnP[Yi = yi]︸ ︷︷ ︸
uncensored label

+
∑

lnP[yi ≤ Yi ≤ yi]︸ ︷︷ ︸
censored label with yi∈[yi,yi]

=
∑

ln fY(yi)︸ ︷︷ ︸
uncensored label

+
∑

ln (FY(yi) − FY(yi))︸ ︷︷ ︸
censored label with yi∈[yi,yi]

,

where yi and yi are lower and upper bounds for the label yi,
respectively. Note that yi may be infinity, to indicate right-
censored labels. See Table 1 for full list of censoring types. We
are now ready to define the loss function �AFT.

Table 1. List of label censoring types.

Label censoring Lower bound (yi) Upper bound (yi)

Right-censored Finite nonnegative +∞
Left-censored 0 Finite nonnegative
Interval-censored Finite nonnegative Finite nonnegative

1294 A. BARNWAL, H. CHO, AND T. HOCKING

Table 2. Probability distributions for Z.

Distribution PDF (fZ(z)) CDF (FZ(z)) f ′Z(z) f ′′Z (z)

Normal
exp (−z2/2)√

2π

1
2

(
1 + erf

(
z√
2

))
−zfZ(z) (z2 − 1)fZ(z)

Logistic
ez

(1 + ez)2
ez

1 + ez
fZ(z)(1 − ez)

1 + ez
fZ(z)(e2z − 4ez + 1)

(1 + ez)2

Extreme1 ez e− exp z 1 − e− exp z (1 − ez)fZ(z) (e2z − 3ez + 1)fZ(z)

NOTE: 1Also known as the Gumbel (minimum) distribution. See Therneau (2015).

Definition 1 (Loss function for AFT survival regression).

�AFT(y, T (x)) =

⎧⎪⎨
⎪⎩
− ln fY(y) if y is not censored
− ln (FY(y) − FY(y)) if y is censored with

y ∈ [y, y]
(3)

Under this definition, the sum of losses
∑n

i=1 �(yi, T (xi))
over the training data is identical to − ln L(D). Since we only
know distribution of Z (not of Y), we use the following lemma:

Lemma 1 ((1.27) of Bishop (2006)). Let Y and Z be random
variables. If Y = g(Z) with a monotone increasing function g(·)
that is suitably smooth, the PDF and CDF of Y are expressed in
terms of the PDF and CDF of Z as follows:

fY(y) = fZ(g−1(y)) · d
dy

g−1(y) FY(y) = FZ(g−1(y))

We apply Lemma 1 to (3) with g(Z) = exp (T (x) + σZ) to
get the following formula for �AFT:

Definition 2 (Loss function for AFT survival regression, in terms
of known PDF and CDF).

�AFT(y, T (x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− ln
[

fZ(s(y)) · 1
σy

]
if y is not

censored

− ln
[
FZ(s(y)) − FZ(s(y))

]
if y is censored

with y ∈ [y, y],
where fZ and FZ are given by Table 2 and s(y) = s(y, T (x)) =
(ln y − T (x))/σ is a link function.

See Figure 1 for a geometric representation. Since the pre-
diction T (x) from the tree ensemble model approximates the
log survival time ln y, we use the link function s(y, T (x)) =
(ln y − T (x))/σ in Definition 2 as a convenient measure for
the distance between the prediction and the log survival time.
Although s is a function of two variables, we will use s(y) as a
shorthand for s(y, T (x)) to save space.

2.2. Gradient and Hessian of the AFT Loss

The gradient boosting algorithm in XGBoost uses the gradient
and Hessian of the loss function, which are first and second
partial derivatives of �(y, T (x)) with respect to the second input

T (x). To express partial derivatives in a concise manner, define
a single-letter variable u = T (x) as an alias for the output from
the tree ensemble model. The gradient and Hessian of the AFT
loss function are as follows1:

Definition 3 (Gradient and Hessian of AFT loss).

∂�AFT
∂u

∣∣∣∣
y,u

=
⎧⎨
⎩

f ′
Z(s(y))

σ fZ(s(y))
if y is not censored

fZ(s(y)) − fZ(s(y))
σ [FZ(s(y)) − FZ(s(y))] if y is censored with

y ∈ [y, y]
(4)

∂2�AFT
∂u2

∣∣∣∣
y,u

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− fZ(s(y))f ′′
Z (s(y)) − f ′

Z(s(y))2

σ 2fZ(s(y))2

if y is not censored

−[FZ(s(y)) − FZ(s(y))][f ′
Z(s(y)) − f ′

Z(s(y))]
+[fZ(s(y)) − fZ(s(y))]2

σ 2[FZ(s(y)) − FZ(s(y))]2

if y is censored,
(5)

where f ′
Z and f ′′

Z are the first and second derivatives of the PDF
fZ , respectively, and s(y) = (ln y−u)/σ is defined the same way
as in Definition 2. See Table 2 to look up f ′

Z and f ′′
Z for the three

known distributions.

Proof. The first- and second-order partial derivatives of �AFT
may be derived using basic rules of Calculus. Consult Section 1
of the supplementary materials for the full proof.

2.3. Regularization for the AFT Loss

The Equations (2), (4), and (5) may suffer from numerical
instabilities when the prediction u = T (x) from the tree
ensemble model is far away from the true log survival time
ln y ∈ [ln y, ln y]. There are three causes for the numerical
instabilities:

1For left- and right-censored labels, let fZ(−∞) = fZ(∞) = 0 and FZ(−∞) =
0, FZ(+∞) = 1.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1295

Figure 1. Geometric interpretation of the accelerated failure time (AFT) loss (colored curves), using three distributions (normal, logistic, extreme) with scale parameter
σ = 1. Log survival times are shown using solid black dots, and loss function minima are shown using open colored circles. Note that the prediction T (x) from the tree
ensemble model is in the same scale as the log survival time ln y. Left: for censored data the loss function is defined as the negative log of the difference of cumulative
distribution function values. The example shown has finite upper and lower limits, for which the minimum of the logistic/normal loss occurs at the midpoint between
the two limits, whereas it occurs at a greater value for the extreme distribution. Right: for uncensored data the loss function is defined as the negative log of the density
function, so the normal loss is the usual square loss with symmetric quadratic tails. The logistic loss has symmetric linear tails, whereas the asymmetric extreme loss has a
linear upper tail and an exponential lower tail.

• Zero passed to the logarithm function ln (·): the difference
term FZ(s(y)) − FZ(s(y)) in (2) becomes nearly zero when
the prediction u = T (x) is far away from the true log survival
time ln y ∈ [ln y, ln y]. Passing zero to the logarithm results
in a NAN (Not-a-Number).

• Zero denominator: the denominators in (4) and (5) for cen-
sored data contain the difference term FZ(s(y)) − FZ(s(y)),
which can be nearly zero for the same reason as above. Zero
denominator results in a NAN (Not-a-Number).

• Large number passed to the exponential function exp (·):
the PDF and CDF of the logistic and extreme distributions
contain the exponential function. Since 64-bit floating-point
variables in a C++ program hold up to 10308, the exponential
function yields in an INF (infinity) even for moderately large
inputs.

Refer to the IEEE 754 standard (IEEE 2019) to learn more about
the special representations of floating-point values, such as INFs
and NANs. In order to eliminate INFs and NANs, we apply
regularization in two places.

Regularization for the loss function (2). We replace the differ-
ence term FZ(s(y)) − FZ(s(y)) with ε = 10−12 whenever the
difference term is smaller than ε.

Regularization for the gradient (4) and the Hessian (5). We
explicitly define values of the gradient and Hessian at the limit
u → ±∞. Whenever a numerical instability is detected due
to u being far away from the true log survival time, we set the
gradient and Hessian values according to Table 3. We clip all
gradients to ±15, as large gradients cause numerical difficulties
in XGBoost. In addition, we ensure that the Hessian value is at
least 10−16 for all data points, because data points with zero Hes-
sian are ignored by XGBoost. Regularization forces XGBoost to
consider every data point to a certain extent.

Table 3. Specification of the gradient and Hessian values (∂�/∂u, ∂2�/∂u2) as u →
±∞.

Dist. for Z Label type Uncensored Right-censored
u → −∞ u → +∞ u → −∞ u → +∞

Normal ∂�/∂u −15 15 −15 0
∂2�/∂u2 1/σ 2 1/σ 2 1/σ 2 10−16

Logistic ∂�/∂u −1/σ 1/σ −1/σ 0
∂2�/∂u2 10−16 10−16 10−16 10−16

Extreme ∂�/∂u −15 1/σ −15 0
∂2�/∂u2 15 10−16 15 10−16

Dist. for Z Label type Left-censored Interval-censored
u → −∞ u → +∞ u → −∞ u → +∞

Normal ∂�/∂u 0 15 −15 15
∂2�/∂u2 10−16 1/σ 2 1/σ 2 1/σ 2

Logistic ∂�/∂u 0 1/σ −1/σ 1/σ

∂2�/∂u2 10−16 10−16 10−16 10−16

Extreme ∂�/∂u 0 1/σ −15 1/σ

∂2�/∂u2 10−16 10−16 15 10−16

3. Experiments

3.1. Effectiveness of AFT for Interval-Censored Data

We measure the effectiveness of the XGBoost AFT model for
interval-censored data. We define the accuracy metric for data
with interval-censored labels as follows:

Accuracy(D) =
∣∣∣{i : T (xi) ∈ [ln yi, ln yi]}

∣∣∣
|D| ,

that is, the fraction of data points for which the prediction from
the tree ensemble model falls between the lower and upper
bounds for the true log survival time.

The XGBoost AFT model is compared to three baselines:

survreg Unregularized linear model with AFT loss functions
(Therneau 2015) on principal components, with the number
of components selected using cross-validation.

1296 A. BARNWAL, H. CHO, AND T. HOCKING

penaltyLearning L1-regularized linear model with squared
hinge loss (Rigaill et al. 2013), with the degree of L1
regularization selected by cross-validation.

MMIT Max Margin Interval Trees (Drouin, Hocking, and Lavi-
olette 2017), which generalizes the well-known Classification
and Regression Tree (CART) algorithm of Breiman et al.
(1984) to censored outputs. The tree depth is selected using
cross-validation.
We perform nested cross-validation to estimate the general-

ization performance of the model as well as the hyperparameter
search procedure. We use 5-fold internal cross-validation to
evaluate multiple hyperparameter combinations. Each combi-
nation is judged using the mean validation accuracy over the
5-fold. (The mean validation accuracy is also used to determine
the number of boosting rounds.) We then perform 4-fold exter-
nal cross-validation to quantify the generalization performance
of the training procedure, as follows: we fit a new model using
the best hyperparameter combinations, using all data points
except the held-out test set. The test accuracy is evaluated with
the held-out test set. For hyperparameter search, we run 100
trials in the random search; see Section 3.3 for details.

Experiments in Sections 3.1.1 and 3.1.2 were conducted
using a workstation with one Intel Core i7-7800X CPU (3.50
GHz, 6 cores) and two DDR4 RAMs (16 GB each, 2133 MHz),
running Ubuntu 18.04 LTS.

3.1.1. Interval-Censored Data from Supervised Changepoint
Detection Problems

To test our algorithm in real datasets with interval-censored
outputs, we consider a benchmark of supervised peak detection
problems in genomic ChIP-seq data (Rigaill et al. 2013; Hocking
et al. 2016). Each of the 10 datasets in Table 4 corresponds to a set
of high-throughput DNA sequencing experiments. Expert biol-
ogists manually labeled each dataset to indicate locations with
and without peaks; these labels are used to compute the peak
detection error rate. The goal of the ChIP-seq peak detection is
to automatically locate peaks given a new DNA sequence, such
that peak detection error rate is minimal. Each dataset is named
like H3K4me3_PGP_immune:

• The first field (H3K4me3) identifies the assay type. Consult
the McGill Epigenomics Mapping Centre website2 for the full
list of assay types and their meaning.

• The second field (PGP) is the initials of the expert biologist
who provided the labels.

• The last field (immune) identifies a sample set. Consult
Hocking et al. (2016) for more information.

A univariate signal is computed for each sample by computing
coverage frequency of aligned DNA sequence reads at each
positions of the reference genome sequence. To detect peaks in
the univariate signal, we use an changepoint detection algorithm
with learned penalty functions (Rigaill et al. 2013). Briefly, the
penalty parameter λ of the changepoint detection algorithm
controls the number of distinct segments/peaks detected. It is
possible to compute a range of optimal penalty values [λ∗, λ∗]
that are optimal in terms of the expert-provided labels; that

2https://epigenomesportal.ca/edcc/index.html.

Table 4. Dimensions of ChIP-seq datasets and descriptive statistics.

min.log max.log
Dataset Rows Columns .lambda .lambda

(1) ATAC_JV_adipose 465 36 8.581 10.470
(2) CTCF_TDH_ENCODE 182 36 10.246 12.643
(3) H3K27ac-H3K4me3_TDHAM_BP 2008 36 7.674 9.641
(4) H3K27ac_TDH_some 95 36 9.318 10.365
(5) H3K36me3_AM_immune 420 36 8.955 12.723
(6) H3K27me3_RL_cancer 171 36 14.332 16.192
(7) H3K27me3_TDH_some 43 36 10.617 11.389
(8) H3K36me3_TDH_ENCODE 78 36 8.147 9.634
(9) H3K36me3_TDH_immune 84 36 10.939 13.003
(10) H3K36me3_TDH_other 40 36 9.742 12.389

NOTE: The log lambda values given above are averages over the dataset.

is, setting λ to any value in [λ∗, λ∗] will minimize the label
error rate. We cast the peak detection problem into an interval-
censored regression problem as follows. The univariate signal is
used to compute a feature vector x ∈ R

36 that stores various
summary statistics, such as percentiles, of the signal. The range
of optimal penalty values [λ∗, λ∗] is taken to be an interval-
censored label.

We preprocess the data as follows: we apply the exponen-
tial function exp(·) to the output labels min.log.lambda
and max.log.lambda to obtain the nonnegative interval-
censored labels min.lambda and max.lambda. Then we
remove all feature columns that either (i) had at least one miss-
ing value or (ii) had zero variance.

Figure 2(a) shows the generalization performance (test accu-
racy) and run time of XGBoost and the baseline packages.
XGBoost exhibits competitive generalization performance on
par with SurvReg, penaltyLearning, and MMIT. In addition,
XGBoost is fast: its run time approaches that of SurvReg and
penaltyLearning and significantly smaller than that of MMIT.
Considering that SurvReg and penaltyLearning are linear mod-
els and MMIT nonlinear, the run-time performance speaks to
the efficiency of XGBoost.

3.1.2. Synthetic Interval-Censored Data Generated from
Known Distributions

Drouin, Hocking, and Laviolette (2017) generated synthetic
interval-censored data based on three kind of features: sine,
absolute and linear. It has a mix of nonlinear and linear features
having 200 samples and 20 features in each dataset. We extend
it with three more datasets having more complex nonlinear fea-
tures. We use a random number generator to generate interval-
censored data as follows.

First, generate the feature vectors x ∈ R
20 by sampling from

the uniform distribution U([0, 10]). Second, draw 10 values
randomly from the normal distribution N (f (x), 0.3) where the
mean is determined with a function f : R20 → R that maps the
feature vector x to a real value. Third, out of the 10 values, choose
the smallest as the lower bound y and the largest as the upper
bound y. Lastly, add a small noise to both the interval bounds
by sampling a value from N (0, 0.2) and adding it to y and y.

Each generated dataset was named after the choice for f :

• simulated.sin: f (x) = sin(x1)
• simulated.abs: f (x) = |x1 − 5|
• simulated.linear: f (x) = x1/5

https://epigenomesportal.ca/edcc/index.html

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1297

Figure 2. Experimental results from Section 3.1: Test accuracy and run time.

• simulated.model.1: f (x) = x1x2 +x2
3 −x4x7 +x8x10 −

x2
6

• simulated.model.2: f (x) = − sin(2x1) + x2
2 + x3 −

exp(−x4)
• simulated.model.3: f (x) = x1 + 3x2

3 − 2 exp(−x5)

We compare the performance of penalty Learning, survReg,
MMIT, and XGBoost on test data of size 100. As in Section 3.1.1,
we perform nested cross-validation to estimate the generaliza-
tion performance of the model as well as the hyperparameter
search procedure; this time, we use 5-fold for both the outer and

inner cross-validation. We reproduce the behavior in Drouin,
Hocking, and Laviolette (2017), where nonlinear models like
mmit better capture nonlinear patterns in simulated data than
linear models do. In Figure 2(b), both XGBoost and mmit
exhibit superior generalization performance (test accuracy)
compared to the linear models, SurvReg and penaltyLearning.
The additional run-time incurred by the nonlinear models is
compensated by higher test accuracy. The difference between
XGBoost and mmit is more pronounced when we look at the
three simulated data we added apart from those from Drouin,
Hocking, and Laviolette (2017). XGBoost runs faster than mmit,

1298 A. BARNWAL, H. CHO, AND T. HOCKING

up to 3x, and shows higher test accuracy. In particular, for
simulated.model.3, XGBoost achieves 58.5% mean test
accuracy, whereas mmit achieves 18%.

3.2. Effectiveness of AFT on Right-Censored Data

We measure the effectiveness of the XGBoost AFT model for
right-censored data using Uno’s C-statistics (Uno et al. 2011),
which is a modified form of Harell’s Concorance Index (Harrell
Jr. et al. 1982). Uno’s C-statistics is an unbiased nonparametric
estimator for the following ranking metric:

C = P[T (xi) < T (xj)|yi < yj, yi < τ].
The τ constant is chosen judiciously in order to truncate outlier
labels when estimating C. In this experiment, we set τ to the
80th percentile of the observed survival time. We use the imple-
mentation of Uno’s C-statistics from the Scikit-Survival package
(Pölsterl 2020).

The XGBoost AFT model is compared to two baselines:

XGBoost-Cox Cox-PH model from the XGBoost package
(Lundberg, Erion, and Lee 2019), enabled by setting
configuration objective=’survival:cox’.

Scikit-Survival Cox-PH linear model from the Scikit-Survival
package (Pölsterl 2020)

As in Section 3.1, we use nested cross-validation to assess the
generalization performance of the model as well as the hyper-
parameter search procedure. For hyperparameter search, we run
100 trials in the random search; see Section 3.3 for details.

3.2.1. Synthetic Data with a Mix of Uncensored and
Right-Censored Labels

Using a random number generator, we generate synthetic data
consisting a mix of uncensored and right-censored labels, as
follows3:

1. Draw a feature vector x ∈ R
20 from the uniform distribution

U([0, 1]).
2. Draw the “risk score” r ∈ R from the normal distribution

N (f (x), 0.3) where f (x) = x1 + 3x2
3 − 2 exp (−x5) is a

nonlinear map.
3. Draw u from the uniform distribution U([0, 1]).
4. Compute the ground-truth survival time y = − ln u/(h0hr),

where h0 = 0.1 is the baseline hazard and h = 2.0 is the
hazard ratio.

5. Simulate the effect of random censoring by drawing cutoff
value c from the uniform distribution U([0, C]), where C is
suitably chosen to induce censoring for a set fraction of data
points. If y ≥ c, the label is right-censored and we set the label
range [y, y] = [c, +∞). If y < c, the label is not censored and
we set [y, y] = [y, y].

Repeat the steps to generate 1000 data points. The experiment
result with this method of data generation is shown with label
data_gen=coxph in Figure 3. When 20% the labels are
(right-)censored, the Cox-PH model from Scikit-Survival pro-
duces slightly higher C-statistics metric than XGBoost models.

3This method is adapted from a tutorial on the Scikit-Survival package’s
website (Pölsterl 2020).

On the other hand, with greater amount of censoring (50%,
80%), the test C-statistics for XGBoost-AFT and XGBoost-
CoxPH are similar to the test C-statistics for Scikit-Survival’s
Cox-PH.

We now generate data with a mix of uncensored and right-
censored labels using a different method.

1. Draw a feature vector x ∈ R
20 from the uniform distribution

U([0, 1]).
2. Draw the “risk score” r ∈ R from the normal distribution

N (f (x), 0.3) where f (x) = x1 + 3x2
3 − 2 exp (−x5) is a

nonlinear map.
3. Compute the ground-truth survival time y = exp (−r).
4. Simulate the effect of random censoring by drawing cutoff

value c from the uniform distribution U([0, C]). This step is
analogous to Step 5 of the previous recipe.

Repeat the steps to generate 1000 data points. The experiment
result with this method of data generation is shown with label
data_gen=aft in Figure 3. When 20% of the labels are
censored, XGBoost-AFT with the normal distribution produces
slightly higher C-statistics metric than all other models. On
the other hand, when 50% of the labels were censored, there is
no clear winner; XGBoost-AFT and XGBoost-CoxPH produce
similar test C-statistics as Scikit-Survival’s Cox-PH. With 80%
censoring, Scikit-Survival’s Cox-PH produces the highest test
C-statistics, and XGBoost-AFT and XGBoost-Cox are slightly
behind. In all settings, XGBoost-AFT runs 2–3× faster than
XGBoost-Cox-PH or Scikit-Survival’s Cox-PH.

3.3. Effect of Hyperparameters on Model Performance

To measure how sensitive the generalization performance
is to the choice of hyperparameters, we try an array of
approaches for selecting hyperparameters. There are six
relevant hyperparameters: learning_rate, max_depth,
min_child_weight, reg_alpha, reg_lambda, and
aft_loss_distribution_scale.4 The following meth-
ods are considered:

Grid search We select one or two hyperparameters out
of the six and exhaustively enumerate all combinations
using the grid in Table 5. If a hyperparameter is not
chosen for the grid search, we assign a default value
as follows: learning_rate = 0.1, max_depth= 6,
min_child_weight = 1.0, reg_alpha= 0.001, reg_
lambda = 1.0, aft_loss_distribution_scale =
1.0.

Random search We use Optuna (Akiba et al. 2019) to ran-
domly sample hyperparameter combinations from the search
space (Table 5). All six hyperparameters are sampled. Each
search is run for 100 or 1000 combinations.

Baseline (do nothing) Choose default values for all hyperpa-
rameters and perform no search.

For the grid search, we try all possible ways of choosing one
or two hyperparameters out of six. The generalization perfor-
mance is measured in the aggregate with test accuracy.

4σ in (1).

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1299

Figure 3. Experimental results from Section 3.2: Test accuracy and run time.

Table 5. Search space for hyperparameters.

Hyperparameter Search grid

learning_rate 0.001, 0.01, 0.1, 1.0
max_depth 2, 3, 4, 5, 6, 7, 8, 9, 10
min_child_weight 0.001, 0.1, 1.0, 10.0, 100.0
reg_alpha 0.001, 0.01, 0.1, 1.0, 10.0, 100.0
reg_lambda 0.001, 0.01, 0.1, 1.0, 10.0, 100.0
aft_loss_distribution_scale 0.5, 0.8, 1.1, 1.4, 1.7, 2.0

Hyperparameter Distribution for random search
learning_rate log uniform in [0.001, 1.0]
max_depth integers in [2, 10]
min_child_weight log uniform in [0.001, 100.0]
reg_alpha log uniform in [0.001, 100.0]
reg_lambda log uniform in [0.001, 100.0]
aft_loss_distribution_scale uniform in [0.5, 2.0]

As in Section 3.1.1, we perform nested cross-validation to
estimate the generalization performance of the model as well
as the hyperparameter search procedure. We use 4- and 5-fold
for the outer and inner cross-validation, respectively. We used
datasets from Sections 3.1.1 and 3.1.2.

In order to perform lots of hyperparameter search in a short
amount of time, Amazon Web Services (AWS) is used to launch
parallel jobs, in order to evaluate many hyperparameter search
strategies. The manager EC2 instance launches hundreds of
worker EC2 instances and then submits commands to execute
via SSH. To ensure that all software dependencies are available
to the experiment code as well as our XGBoost code, we package
our code in a Docker container and host the container on Elastic
Container Registry (ECR). The workers then pull the latest
container image from ECR. The experiment is logged to an S3
bucket.

In all runs, the random search with 1000 trials gives the
highest validation accuracy. However, high validation accuracy
does not lead to high test accuracy. The grid search with one or
two hyperparameters, where the number of trials is fewer than
100, yields higher test accuracy than the random search with
1000 trials. Refer to Section 2 of the supplementary materials
to find the results for all datasets and hyperparameter search
methods. When it comes to improving aggregate measure of

1300 A. BARNWAL, H. CHO, AND T. HOCKING

Table 6. Comparing performance of CPU and GPU using the 20 million synthetic
data.

Test fold ID # boosting rounds Run time (sec)

CPU GPU Speedup

1 52 50.72 8.36 6.1×
2 149 150.33 22.49 6.7×
3 53 54.07 8.52 6.3×
4 81 81.33 12.44 6.5×
5 83 92.48 14.13 6.5×

generalization, test accuracy, it suffices to try 100 hyperparam-
eter combinations; it does not make much difference in test
accuracy to try more than 100 combinations.

3.4. Efficient Model Fitting with NVIDIA GPUs

XGBoost is able to use NVIDIA GPUs to accelerate its gradient
boosting algorithm (Mitchell and Frank 2017; Ou 2020). We
port the AFT loss function so that it can run on NVIDIA
GPUs. To test the performance, we generate a synthetic dataset
with 20 million samples, by duplicating 100,000 times5 the
data simulated.model.3 from Section 3.1.2. We then fit
5 XGBoost models using the five cross-validation folds. Each
model is trained using the best hyperparameters found in Sec-
tion 3.1.2. Table 6 shows the timing results. In all folds, the GPU
fits the model 6.1–6.7× faster than the CPU.

We used NVIDIA Quadro® RTX 8000 with CUDA 10.2. The
GPU has 4608 cores divided into 72 streaming multiprocessors
and 48 GB GDDR6 memory.

4. Limitations

In this section we discuss two limitations of our current
approach: sensitivity to hyperparameters and prediction of
survival curves. First, even though Section 3.3 shows that the test
accuracy is not very sensitive to the choice of hyperparameters,
sensitivity to hyperparameters manifests itself in other ways.
Vieira et al. (2021) present an example where two XGBoost AFT
models that were fit with different values for the hyperparameter
aft_loss_distribution_scale (and all the other
hyperparameters the same) achieved nearly identical C-index
metric on a validation dataset but produced highly different
mean survival time on the same validation set. Aggregate
metrics fail to account for this phenomenon.

In addition, the XGBoost software package lacks some tools
that are often used in the literature of survival analysis, such
as survival curve and confidence interval computation. The
survival curve is defined as, for each time point t, the proportion
of the population for which the event would complete by t.
Although the XGBoost predict method only computes a point
estimate (mean) of the survival time for each individual in
the population, interested users could also compute a survival
curve using the chosen AFT distribution and scale parameter.
A concern with such survival curves is that they may not be

5The duplicated rows got the same fold assignment as their originals, so that
the fraction of data points belonging to each cross-validation fold remains
the same.

well-calibrated. In many applications, statistical models should
be well calibrated to produce accurate probabilistic predictions,
which in turn let us to accurately quantify the uncertainty
around the given prediction.

It is possible to mitigate the aforementioned limitations. After
our code became part of the XGBoost package on August 2020, a
follow-up work (Vieira et al. 2021) addressed the shortcomings
mentioned above, via model stacking. The authors created a
new package XGBSE that built on top of the XGBoost AFT
model, where the output of the XGBoost model is used as
an input to a second model that is amenable to probability
calibration, such as logistic regression or nearest neighbor. A
survival curve is obtained by fitting a Kaplan–Meier estimator
(Kaplan and Meier 1958) from the output of the second model.
With this approach of model stacking, the authors were able to
obtain well-calibrated survival curves that are not sensitive to
the choice of hyperparameters. In short, XGBSE capitalized on
existing strengths of XGBoost AFT while mitigating its limita-
tions. The authors state that they chose to build on XGBoost
AFT, because of its state-of-the-art discriminating power and
generalization performance as given in test metrics.

5. Conclusion

We implemented the Accelerated Failure Time model in
XGBoost, a widely used library for gradient boosting. Using
real and simulated datasets, we show that AFT in XGBoost
show competitive generalization performance and run-time
efficiency, both for interval-censored and right-censored data.
XGBoost gives superior generalization capacity compared
to linear baselines, survReg and penaltyLearning, and runs
faster than the nonlinear baseline, mmit. Furthermore, AFT
in XGBoost is able to take advantage of many capabilities of the
ecosystem of XGBoost, such as support for NVIDIA GPUs. A
future work may take advantage of integration of XGBoost into
distributed computing frameworks such as Apache Spark and
Dask.

Since August 2020, when our work became part of the
XGBoost package, it has enabled follow-up work in open-source
statistical software. Already, packages such as XGBSE and MLR3
(Vieira et al. 2021; Lang et al. 2019) take advantage of the support
for AFT in XGBoost. In particular, XGBSE was built on top of
our work and addressed the major shortcomings (see Section 4).
Usage of our software indicates real-world relevance and impact
of our contribution.

Supplementary Materials

Supplementary_Material.pdf: Supplementary Material containing the
full proof for Definition 3 and the full table for hyperparameter search
results from Section 3.3.

JCGS_XGBoost_AFT_Tutorial.pdf: Short tutorial showing how to use
AFT in XGBoost, in R and Python programming environments.

XGBoostAFTPaperCode/: Directory containing the full source code and
scripts, needed to reproduce the experiments in the manuscript. Read
README.md for instructions.

Acknowledgments

The author gratefully acknowledge Google for supporting him via Google
Summer of Code 2019.

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 1301

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019), “Optuna:
A Next-Generation Hyperparameter Optimization Framework,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, pp. 2623–2631, New
York, NY: Association for Computing Machinery. https://doi.org/10.
1145/3292500.3330701. [1298]

Allison, P. D. (2010), Survival Analysis Using SAS: A Practical Guide, Cary,
NC: SAS Institute. [1292]

Barabadi, A., Barabady, J., and Markeset, T. (2010), “Application of Accel-
erated Failure Model for the Oil and Gas Industry in Arctic Region,”
in 2010 IEEE International Conference on Industrial Engineering and
Engineering Management, pp. 2244–2248. [1293]

Bühlmann, P., and Hothorn, T. (2007), “Boosting Algorithms: Regular-
ization, Prediction and Model Fitting,” Statistical Science, 22, 477–505.
https://doi.org/10.1214/07-STS242. [1293]

Binder, H., and Schumacher, M. (2008), “Allowing for Mandatory Covari-
ates in Boosting Estimation of Sparse High-Dimensional Survival Mod-
els,” BMC Bioinformatics, 9, 14. https://doi.org/10.1186/1471-2105-9-14.
[1293]

Bishop, C. M. (2006), Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics), Berlin: Springer-Verlag. [1294]

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984), Classifica-
tion and Regression Trees, Boca Raton, FL: CRC press. [1296]

Breslow, N. E. (1972), “Discussion on Professor Cox’s Paper,”
Journal of the Royal Statistical Society, Series B, 34, 202–220.
https://doi.org/10.1111/j.2517-6161.1972.tb00900.x. [1292]

Buckley, J., and James, I. (1979), “Linear Regression with Censored Data,”
Biometrika, 66, 429–436. [1292]

Burges, C. J. C. (2010), “Fom RankNet to LambdaRank to Lamb-
daMART: An overview,” Technical Report MSR-TR-2010-82. Availalbe
at https://www.microsoft.com/en-us/research/publication/from-ranknet-
to-lambdarank-to-lambdamart-an-overview/. [1293]

Chen, T., and Guestrin, C. (2016), “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794,
New York, NY: Association for Computing Machinery. https://doi.org/
10.1145/2939672.2939785. [1293]

Chen, T., Singh, S., Taskar, B., and Guestrin, C. (2015), “Efficient Second-
Order Gradient Boosting for Conditional Random Fields,” in Proceed-
ings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, volume 38 of Proceedings of Machine Learning Research,
eds. G. Lebanon and S. V. N. Vishwanathan, pp. 147–155, San Diego,
CA. PMLR. Available at http://proceedings.mlr.press/v38/chen15b.html.
[1293]

Chiou, S., Kang, S., and Yan, J. (2014), “Fitting Accelerated Failure Time
Models in Routine Survival Analysis with R package aftgee,” Journal
of Statistical Software, 61, 1–23. https://doi.org/10.18637/jss.v061.i11.
[1292]

Cox, D. R. (1972), “Regression Models and Life-Tables,” Journal of the Royal
Statistical Society, Series B, 34, 187–220. [1292]

Dirick, L., Claeskens, G., and Baesens, B. (2017), “Time to Default in
Credit Scoring Using Survival Analysis: A Benchmark Study,” Journal of
the Operational Research Society, 68, 652–665. https://doi.org/10.1057/
s41274-016-0128-9. [1293]

Drouin, A., Hocking, T., and Laviolette, F. (2017), “Maximum Margin
Interval Trees,” in Advances in Neural Information Processing Systems 30,
eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, pp. 4947–4956. Curran Associates, Inc.,
2017. Available at http://papers.nips.cc/paper/7080-maximum-margin-
interval-trees.pdf . [1293,1296,1297]

Faruk, A. (2018), “The Comparison of Proportional Hazards and Acceler-
ated Failure Time Models in Analyzing the First Birth Interval Survival
Data,” Journal of Physics: Conference Series, 974, 012008. https://doi.org/
10.1088%2F1742-6596%2F974%2F1%2F012008. [1292]

Friedman, J., Hastie, T., and Tibshirani, R. (2000), “Additive Logistic Regres-
sion: A Statistical View of Boosting,” (with Discussion and a Rejoinder
by the Authors), The Annals of Statistics, 28, 337–407. https://doi.org/10.
1214/aos/1016218223. [1293]

Friedman, J. H. (2001), “Greedy Function Approximation: A Gradient
Boosting Machine,” The Annals of Statistics, 29, 1189–1232. [1292]

Harrell, F. E., Jr., Califf, R. M., Pryor, D. B., Lee, K. L., and Rosati, R. A.
(1982), “Evaluating the Yield of Medical Tests,” JAMA: The Journal of the
American Medical Association, 247, 2543–2546. https://doi.org/10.1001/
jama.1982.03320430047030. [1298]

Hocking, T. D., Goerner-Potvin, P., Morin, A., Shao, X., Pastinen, T., and
Bourque, G. (2016), “Optimizing ChIP-seq Peak Detectors Using Visual
Labels and Supervised Machine Learning,” Bioinformatics, 33, 491–499.
https://doi.org/10.1093/bioinformatics/btw672. [1296]

Hothorn, T., Lausen, B., Benner, A., and Radespiel-Tröger, M.
(2004), “Bagging Survival Trees,” Statistics in Medicine, 23, 77–91.
https://doi.org/10.1002/sim.1593. [1293]

IEEE (2019), “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-
2019 (Revision of IEEE 754-2008), pp. 1–84. [1295]

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., and Lauer, M. S. (2008),
“Random Survival Forests,” The Annals of Applied Statistics, 2, 841–860.
https://doi.org/10.1214/08-AOAS169. [1293]

Kaplan, E. L., and Meier, P. (1958), “Nonparametric Estimation from
Incomplete Observations,” Journal of the American Statistical Associa-
tion, 53, 457–481. [1300]

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and
Liu, T.-Y. (2017), “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree,” in Advances in Neural Information Processing Systems
30, eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, pp. 3146–3154. Curran Asso-
ciates, Inc. http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-
gradient-boosting-decision-tree.pdf . [1293]

Khan, M. H., and Shaw, J. E. H. (2016), “Variable Selection for Survival Data
with a Class of Adaptive Elastic Net Techniques,” Statistics and Comput-
ing, 26, 725–741. https://doi.org/10.1007/s11222-015-9555-8. [1292]

Kvamme, H., Borgan, Ø., and Scheel, I. (2019), “Time-to-Event Prediction
with Neural Networks and Cox Regression,” Journal of Machine Learning
Research, 20, 1–30. [1293]

Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q.,
Casalicchio, G., Kotthoff, L., and Bischl, B. (2019), “mlr3: A Modern
Object-Oriented Machine Learning Framework in R,” Journal of Open
Source Software, 4, 1903. https://doi.org/10.21105/joss.01903 [1300]

Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2019), “Consistent Individual-
ized Feature Attribution for Tree Ensembles.” https://arxiv.org/abs/1802.
03888 [1293,1298]

Miller, R. G. (1976), “Least Squares Regression with Censored Data,”
Biometrika, 63, 449–464. [1292]

Mimi, A., and Khan, M. H. R. (2021), “Variable Selection for Censored
Data Using Modified Correlation Adjusted Correlation (mcar) Scores,”
Statistics in Medicine, 40, 5046–5064. https://doi.org/10.1002/sim.9110
[1292]

Mitchell, R., and Frank, E. (2017), “Accelerating the XGBoost Algorithm
Using GPU Computing,” PeerJ Computer Science, 3, e127. [1300]

Ou, R. (2020), “Out-of-Core GPU Gradient Bboosting.” https://arxiv.org/
abs/1802.03888 [1300]

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.
(2011), “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, 12, 2825–2830. [1293]

Pölsterl, S. (2020), “scikit-survival: A Library for Time-to-Event Analysis
Built on Top of scikit-learn,” Journal of Machine Learning Research, 21,
1–6. [1293,1298]

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and
Gulin, A. (2018), “CatBoost: Unbiased Boosting with Categori-
cal Features,” in Advances in Neural Information Processing Sys-
tems 31, eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, pp. 6638–6648. Curran Associates,
Inc. Available at http://papers.nips.cc/paper/7898-catboost-unbiased-
boosting-with-categorical-features.pdf . [1293]

Rigaill, G., Hocking, T., Vert, J.-P., and Bach, F. (2013), “Learning Sparse
Penalties for Change-Point Detection Using Max Margin Interval
Regression,” in Proceedings of the 30th International Conference on
Machine Learning (ICML), pp. 172–180. [1296]

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1214/07-STS242
https://doi.org/10.1186/1471-2105-9-14
https://doi.org/10.1111/j.2517-6161.1972.tb00900.x
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://proceedings.mlr.press/v38/chen15b.html
https://doi.org/10.18637/jss.v061.i11
https://doi.org/10.1057/s41274-016-0128-9
https://doi.org/10.1057/s41274-016-0128-9
http://papers.nips.cc/paper/7080-maximum-margin-interval-trees.pdf
http://papers.nips.cc/paper/7080-maximum-margin-interval-trees.pdf
https://doi.org/10.1088%2F1742-6596%2F974%2F1%2F012008
https://doi.org/10.1088%2F1742-6596%2F974%2F1%2F012008
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1093/bioinformatics/btw672
https://doi.org/10.1002/sim.1593
https://doi.org/10.1214/08-AOAS169
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://doi.org/10.1007/s11222-015-9555-8
https://doi.org/10.21105/joss.01903
https://arxiv.org/abs/1802.03888
https://arxiv.org/abs/1802.03888
https://doi.org/10.1002/sim.9110
https://arxiv.org/abs/1802.03888
https://arxiv.org/abs/1802.03888
http://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf
http://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf

1302 A. BARNWAL, H. CHO, AND T. HOCKING

Schmid, M., and Hothorn, T. (2008), “Flexible Boosting of Accelerated
Failure Time Models,” BMC Bioinformatics, 9, 269–269. [1293]

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., and Beghi, A. (2015),
“Machine Learning for Predictive Maintenance: A Multiple Classi-
fier Approach,” IEEE Transactions on Industrial Informatics, 11, 812–
820. [1293]

Therneau, T. M. (2015), “A Package for Survival Analysis in S,” version 2.38.
Available at https://CRAN.R-project.org/package=survival. [1294,1295]

Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., and Wei, L.-J. (2011),
“On the C-statistics for Evaluating Overall Adequacy of Risk Prediction
Procedures with Censored Survival Data,” Statistics in Medicine, 30,
1105–1117. https://doi.org/10.1002/sim.4154. [1298]

Vaid, A., Somani, S., Russak, A. J., De Freitas, J. K., Chaudhry, F. F., Paranjpe,
I., Johnson, K. W., Lee, S. J., Miotto, R., Richter, F., Zhao, S., Beckmann,
N. D., Naik, N., Kia, A., Timsina, P., Lala, A., Paranjpe, M., Golden,
E., Danieletto, M., Singh, M., Meyer, D., O’Reilly, P. F., Huckins, L.,
Kovatch, P., Finkelstein, J., Freeman, R. M., Argulian, E., Kasarskis, A.,
Percha, B., Aberg, J. A., Bagiella, E., Horowitz, C. R., Murphy, B., Nestler,
E. J., Schadt, E. R., Cho, J. H., Cordon-Cardo, C., Fuster, V., Charney,
D. S., Reich, D. L., Bottinger, E. P., Levin, M. A., Narula, J., Fayad, Z.
A., Just, A. C., Charney, A. W., Nadkarni, G. N., and Glicksberg, B.
S. (2020), “Machine Learning to Predict Mortality and Critical Events
in a Cohort of Patients with COVID-19 in New York City: Model
Development and Validation,” Journal of Medical Internet Research, 22,
e24018. https://doi.org/10.2196/24018. [1293]

Van den Poel, D., and Larivière, B. (2004), “Customer Attrition Anal-
ysis for Financial Services Using Proportional Hazard Models,”
European Journal of Operational Research, 157, 196–217. https://
doi.org/10.1016/S0377-2217(03)00069-9. http://www.sciencedirect.com/
science/article/pii/S0377221703000699. Smooth and Nonsmooth Opti-
mization. [1293]

Vieira, D., Gimenez, G., Marmerola, G., and Estima, V. (2021), “XGBoost
Survival Embeddings: Improving Statistical Properties of XGBoost Sur-
vival Analysis Implementation,” Available at http://github.com/loft-br/
xgboost-survival-embeddings. [1300]

Viganò, A., Dorgan, M.,Buckingham, J., Bruera, E., and Suarez-Almazor, M.
E. (2000), “Survival Prediction in Terminal Cancer Patients: A System-
atic Review of the Medical Literature,” Palliative Medicine, 14, 363–374.
https://doi.org/10.1191/026921600701536192. [1293]

Wang, P., Li, Y., and Reddy, C. K. (2019), “Machine Learning for Survival
Analysis: A Survey,” ACM Computing Surveys, 51, 1–36. https://doi.org/
10.1145/3214306. [1292]

Wei, L.-J. (1992), “The Accelerated Failure Time Model: A Useful Alter-
native to the Cox Regression Model in Survival Analysis,” Statistics
in Medicine, 11, 1871–1879. https://doi.org/10.1002/sim.4780111409.
[1292]

Zhang, T., and Yu, B. (2003), “On the Convergence of Boosting Procedures,”
in Proceedings of the Twentieth International Conference on International
Conference on Machine Learning, ICML’03, pp. 904–911, AAAI Press.
[1293]

https://CRAN.R-project.org/package=survival
https://doi.org/10.1002/sim.4154
https://doi.org/10.2196/24018
https://doi.org/10.1016/S0377-2217(03)00069-9
https://doi.org/10.1016/S0377-2217(03)00069-9
http://www.sciencedirect.com/science/article/pii/S0377221703000699
http://www.sciencedirect.com/science/article/pii/S0377221703000699
http://github.com/loft-br/xgboost-survival-embeddings
http://github.com/loft-br/xgboost-survival-embeddings
https://doi.org/10.1191/026921600701536192
https://doi.org/10.1145/3214306
https://doi.org/10.1145/3214306
https://doi.org/10.1002/sim.4780111409

	Abstract
	1. Introduction
	Summary of novel contributions

	2. AFT in XGBoost
	2.1. Derivation of AFT Loss Function
	2.2. Gradient and Hessian of the AFT Loss
	2.3. Regularization for the AFT Loss
	Regularization for the loss function (2)
	Regularization for the gradient (4) and the Hessian (5)

	3. Experiments
	3.1. Effectiveness of AFT for Interval-Censored Data
	3.1.1. Interval-Censored Data from Supervised Changepoint Detection Problems
	3.1.2. Synthetic Interval-Censored Data Generated from Known Distributions

	3.2. Effectiveness of AFT on Right-Censored Data
	3.2.1. Synthetic Data with a Mix of Uncensored and Right-Censored Labels

	3.3. Effect of Hyperparameters on Model Performance
	3.4. Efficient Model Fitting with NVIDIA GPUs

	4. Limitations
	5. Conclusion
	Supplementary Materials
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

